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Abstract

Helioseismic time-series have until now been analyzed with a large number of different
methods, which take into account the physical properties of the modes to a varying extent.
It has not been clear whether the neglect of certain properties is unimportant or has led to
systematic errors and increased random errors.

Most methods have until now used a type of least squares fitting of the power spectra,
although it is well known that the points in the power spectra are far from normally distributed.
In particular Anderson et al. (1991) have shown that the wrong assumption of Gaussian errors
leads to both large systematic errors and increased random errors. Also the imperfect isolation
of individual modes has been neglected in many cases, and the resulting’ correlation between
different time-series has not been taken into account.

In this paper I present an analysis method that allows for some of these effects. While this
method does take explicit notice of many aspects of time series data, it is far from complete.
Some of the neglected properties will be pointed out later in the paper, while others have
undoubtly been overlooked. While this method is substantially more computationally intensive
than least squares methods, it is not prohibitively so. I have used it to analyze data taken with
the HAO/NSO Fourier Tachometer (see Bachmann, Brown and Schou, 1993). To illustrate the
properties of the method, I will present a few results from this analysis and from the analysis of
artificial data (see Schou and Brown, 1993).

It is the hope that some of the ideas underlying the method will be generally useful for the

analysis of other datasets.
Introduction

The relationship between the basic mode parameters, the observation technique and the
resulting time-series and Fourier transforms thereof has been described in Schou & Brown (1993),
and some of the notation from that paper is used here.

Briefly, normal mode oscillations of the Sun are seen as periodic variations in intensity or
velocity observed at the solar photosphere, each characterized by a particular temporal frequency
and by a variation in the horizontal dimensions proportional to a spherical harmonic. The
oscillations are observed by taking intensity or velocity images at a cadence of typically 1 image
per minute. In order to isolate the individual modes, these images are multiplied by suitable

* The National Center for Atmospheric Research is sponsored by the National Science Foun-

dation.



spatial masks for each (I,m), designed to isolate the target mode without being too sensitive
to noise or other modes. The time-series for each target (I,m) is then Fourier transformed in
time. As it is generally not possible to observe the Sun continuously, the time-series must be
zero-filled or interpolated in some other way to fill the gaps. This leads to problems such as
temporal sidelobes and lack of independence of the different frequency points in the Fourier
transform; these should ideally be taken into account in the analysis.

Previous methods usually squared the Fourier transforms to turn them into power spectra,
thereby ignoring the phase information. As the phase information is used in the presented
method, this is not done here.

The solar p-modes are thought to be well modeled by damped oscillators that are excited
- stochastically. In this case the values of the real and imaginary parts of the Fourier transform
of a time-series of an isolated mode at a frequency v are normally distributed with a mean of 0

and a variance v(»). The variance is given by a Lorenzian in frequency:

Ptot/w

') = T Emy =0 +1, (1)

where v, is the frequency of the mode, w is the Half Width at Half Maximum (HWHM) of the
line profile, P;,; is a measure of the total power in the mode, and r is the background noise (other
parameters can also be used to describe the Lorenzian). Furthermore, under certain assumptions,
it may be shown that the values at different frequency points in the discrete Fourier transform
are independent. Most importantly, it has to be assumed that the mode excitation is random
and frequent compared to the lifetime of the mode.

Hence, to estimate the mode parameters (v, w, Piot, 7, and possibly others, which will
be lumped into a vector a), one should maximize, with respect to the mode parameters, the
likelihood function L (the joint probability density), given by

L(a) = H P(a,v;), (2)

where the product is over a suitable number of frequencies in the real and imaginary parts of
the discrete Fourier transform and the P’s are the individual probability densities. Notice that
it has been assumed that the individual points are independent. The individual probability
densities P are given by
P(a, 1) = 5 3)

for both the real and the imaginary parts, where z(v;) are the observed values in the Fourier
transform of the data.

Maximizing L is obviously equivalent to minimizing the negative of the logarithm of L,
which except for a constant, is equivalent to minimizing

S(a) = Zlog o)+ 2 (4)

(a’ V.)



Notice that S plays the same role as x? in a least squares fit. This is essentially the method
described in Anderson et al. (1991).

Unfortunately, since only one half of the Sun is observed, it is essentially impossible to isolate
individual modes based on their angular dependence alone. For velocity observations, where one
is only able to observe the line of sight component of the total velocity, the sensitivity decreases
strongly close to the solar imb (where there is already a significant foreshortening), leading to an
effectively reduced observed area and increased problems with isolating individual modes. While
it would seem possible to reduce this problem by increasing the weight of observations near the
limb, the noise typically increases rapidly towards the limb, making this approach undesirable.

As an illustration of the degree of correlation between different modes, see Figure 1. It
is obvious that, at least for the modes shown, the correlation is very strong. The correlation
depends on the type of observations (intensity or velocity), on the spatial masks used, and on
the values of | and m. Typically intensity observations have lower correlations than velocity
observations (again due to the velocity projection effect), and lower m’s have higher correlations
than higher m’s at the same . In any case, the assumption that the individual Fourier transforms
are independent is evidently incorrect. :

Since the modes are not truly isolated by the spatial masks used, the Fourier transform for
a particular target (I, m) is not given by a Fourier transform of a single mode, but rather as a
sum over several modes. The Fourier transform y of an observed time-series is in this case given
by

Yn(¥i) = Y Cnkzi(¥) (5)
k

where the sum is over the modes contributing to the given time-series, ¢ describes the contri-
bution from each mode and zj is the Fourier transform of the k’th mode. The ’leakage matrix’
¢ can be calculated as described in Schou and Brown (1993) given the physics of the modes,
various instrumental and atmospheric effects and the spatial masks used. Notice that c is inde-
pendent of i and is the same for the real and imaginary parts of the Fourier transform. Ideally
the sum should be over all modes, but as described in more detail later, only modes within a
certain | range are generally used, and certain approximations have to be made for I’s other
than the target /. Also note that the noise has been ignored for the moment.
Given the expression (5) the expected covariance matrix E(a, ;) between the different y’s
is
Eum(8,3) = Cov[yn(vi), ym(¥:)] = Y cnkCmivi(a, i)- (6)
k

In this case the probability density at a frequency point v; is given by
P(a,v;) = |27 E(a, v3)| ™/ 2e- 1T B0y, (1)
and the likelihood function is thus maximized by minimizing

S(a)= ZloglE(a,V.-)l + vl E(a,vi) ' ui, (8)
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where | | denotes the determinant and it has again been assumed that observed points with

different frequencies are independent.

Implementation

Clearly it is not possible to fit for all modes simultaneously, which would be the ideal way
to do the fitting. Doing so would lead to both pure numerical problems and be computationally
impossible. Among the numerical problems encountered would be that the covariance matrix
would be very close to singular due to the large crosstalks between modes.

Fortunately the crosstalks are generally very low between modes with significantly different
l or m. Also only a few modes within the range where the crosstalks are significant have
frequencies close to each other. Given these facts, a natural way to proceed is to fit one (n,l)
at a time, trying to take into account the leakage from other modes, at least partially.

Given that the m’s are closely spaced in frequency, compared to their linewidths, it is clear
that the leakage among the m’s must be taken into account. Unfortunately, it turns out that
the covariance matrix is close to singular, for moderately high I’s, if all m’s are considered at
a given frequency. A partial solution to this problem is, as described in more detail later, to
only consider a fairly small range in m at each frequency, covering those m’s with a significant
expected power.

The close spacing of the m’s also means that it is likely to be difficult to fit the frequencies
for the individual m’s. Fortunately it appears that the variation of the mode frequency with
m is fairly smooth. Hence, the individual mode frequencies are not fitted for, but are instead
represented by an 'unperturbed’ mode frequency v, and number of so-called a-coefficients in a
polynomial

Vnim = Vnl + Z ai(n,1)P(m). (9)
i=1

The fit can then be done for v, and the a-coefficients. Previous workers (eg. Libbrecht 1989)
have generally taken the polynomials P} to be Legendre polynomials P/(m) = IPi(m/l) or
P!(m) = LP(m/L), where P; is a Legendre polynomial of degree 7, but I have chosen to use
polynomials that are orthogonal with respect to summation, as suggested by Ritzwoller and
Lavely (1991) (see also Schou, Christensen-Dalsgaard, and Thompson, (1993) for an exact defi-
nition of the polynomials used). The use of a-coefficients rather than individual mode frequencies
has been common to all published observations until now. Notice, however, that the current
method should be able to fit individual frequencies, although there are, as mentioned, likely to
be stability problems, at least for the observations available at the moment. Also note that the

algorithm presented here can use the traditional types of a-coefficients.
In the following some of the details of the fitting method and what has been taken into

account and what has been neglected will be presented. Some possible improvements will also
be discussed later.



(i) General description of minimization procedure

Examples of contour plots of S as a function of selected pairs of variables are shown in
Figure 2. The values of the other parameters were held fixed at a value close to the minimum.

As can be seen from the contour plots in figure 2, most of the parameter combinations are
fairly well behaved, that is reasonably well approximated by a quadratic form. The contours are
somewhat tilted for some combinations, indicating that the determinations of the parameters are
correlated; in those cases the indicated error bars are the projections of the confidence ellipsoid
onto the parameter axis. Generally the highest correlations occur between the parameters
determining the magnitude of the spectrum (amplitude, linewidth, noise level, and, if used,
the power level of modes other than the target mode, as described later). Also the group of
parameters determining the average (over m) mode frequency (v, a;, a4, G etc.) are correlated.
Note that although the polynomials used for the a-coefficients are orthogonal or very nearly so,
the effective weights assigned to the m’s are not equal, leading to some correlations. There also
tend to be small correlations among the odd a-coefficients.

As figure 2 shows, S is not always perfectly represented by a quadratic form far from the
minimum parameter values, but this should not lead to major problems. Notice that the mode
used as an example has a fairly high S/N, for modes with very low S/N, the contours can be
less well behaved.

Despite the highly nonlinear terms in eq. 8, it thus appears that the function to be minj-
mized is fairly well approximated by a quadratic form and can thus be minimized using standard
methods used for nonlinear least squares minimizations. Also note that it is possible to calcu-
late analytical derivatives of S. Estimates of the random errors on the determined parameters
can also be found using methods similar to those in the least squares case, that is an estimate
of the covariance matrix can be obtained from the inverse of the second derivative matrix of
S. The iteration method used here is a modified version of the Levenberg-Marquardt method,
an inefficient implementation of which may be found in Press et al. (among the problems with
their implementation are that functions and derivatives are calculated several times for the same
parameter values, second derivatives are recalculated even for the tiniest parameter changes, the

control parameter may underflow, and various similar problems).
(ii) Calculation of derivatives

As mentioned, it is possible to calculate analytic derivatives of S. Dropping the summation

over the frequency points and defining z = E~y one has:

88 1 8|E| 7 10F 0FE rOFE
v~ |E|ov; Y ( BRI BT v=15 ) -5 5" (10)
and 0*s 8?
_ E -1, OF 4 0F
8v;0v; ~ Ov;0v; Bt dv; ( E EI);E ) (11)
OFE oF 8*E
T -1 -1 -1 -1 -1
- —9g—122 —_—
y ( 2 31)_7' E 6v,E tE ijav.-E ) y
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Rearranging a bit using the fact that 83 g‘; = 0 for all 1, j (as follows from eq. (6)) yields

%S ) 1aE)T r8E __,8E
= - 1 1. -1 - 22— F 12
80_,'61).‘ (E 81),' ) (E 8v; + 8 Ov; & ( )

where the expressions

(47 = -4 (240) 470,

dA da; - dA I\T
| | lA'E =4 A 1)_,'4:'44";{'(‘4 1)

A-B= E AijBi; = E(ABT)H

i.J i

and
A-(BC)=(BTA)-C (13)
have been used.
Finally we have '
as 88 8v;
= bl 14
k z’: 30; Bak ( )
and 8*s 8*S Ov: 8 8s &? 8%S 0Ov; 8
Ov; dv; 0% Ov; 8v;
el 15
aakaa, Z 0v;0v; Ba, ¢9a;c Z ov; 3ak8a; Z 0v;0v; 8a1 8ak (15)

where the second derivatives of v with respect to a have been dropped. Note that since only
the second derivative is modified in this way and not the function be minimized, the fitted value
is (ideally) not affected, only the iteration path taken to reach it. It is possible to use other
approximations, but this is the most straightforward to derive.

The derivatives may also be calculated by using E instead of the variances as intermediate
variable. This way of expressing the derivatives is useful when calculating the derivatives with
respect to the background noise. The noise is added as a term rE,;,. to equation (8), where 7
is the noise level and E,;,e is an estimate of the noise covariance matrix. (Actually the log of
the noise is used in the fitting.) In this case %% = E,ise

Then we have:

as _
aE‘J = (E l)jl' - Z,‘ZJ', (16)
and o,
BE0Em ~(E™)im(E ™ nj + 2(E™im2zn + 2m(E ™ )njzi, (17)
and thereby, using the chain rule
as 0S OE;;
Bay = 2 35, Bar” (18)
] J
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and
89S O'Ei; OE;; 0Emn _ 8S  OE;; 8Em,,
19
aazaak E aE.-,- 8ak8a, ‘,JZ 8E,18Emn Bak 8a1 Z 8E,_73Emn 8 ( )

where the second derivatives of E with respect to a have been neglected.

A way to find the noise covariance matrix Eqnoi,e is to estimate it from the noise outside
the p-mode band. Unfortunately the different noise sources contribute different fractions of the
noise at different frequencies, and it is thus not quite clear which part of the frequency spectrum
to use. Different methods for estimating the noise covariance matrix will be discussed later.

(iii) Effects taken into account

The presence of gaps in the time-series due to day/night cycles, bad weather and instrument
failures also needs to be taken into account. The periodic nature of the gaps typically leads
to so called temporal sidelobes in the power spectra/Fourier transforms. This is modeled by
convolving the model spectra (the v’s) and their derivatives with the sidelobe structure (which
is assumed known a priori). This only solves half of the problem, however It takes care of
properly modelling the sidelobes, but the correlations between different frequency points in the
Fourier transform introduced by the sidelobes is not taken into account. The possible effects of
this omission will be discussed later.

Another effect to be taken into account is the signal contributed from the modes not ex-
plicitly fitted for (eg. those with (n,!) different from the target mode). These modes causes
additional peaks to appear in the power spectra, both through their main lobes and their tempo-
ral sidelobes. Generally the main lobes are of little concern as they for most I’s have frequencies
far from the target mode. For the very lowest I’s, they can however present some problems. The
temporal sidelobes of the neighbouring modes on the other hand often cause problems as they
can have frequencies close to those of the target mode.

One fairly simple way of taking these other modes into account is to treat their contribution
to the covariance matrix for target mode as an additional source of (highly frequency dependent)
noise. To be specific, the contribution Ey¢h.r to the covariance matrix from the other I’s and
n’s is calculated from the initial estimates of the parameters for the other modes, using eq. (6).
(6) is then modified by adding a term Pyther Eother. The parameter Pygner is then either kept
fixed P,sher = 1, fitted for or adjusted according to the correction to the power of the target
mode. The 'justification’ for the latter approach is that modes with almost the same frequency
but slightly different / (those most likely to interfere) are likely to have their initial estimates
in error by roughly the same amount. This is clearly not the ideal way to do things, but most
other ways have undesirable properties, such as increasing the computing time by an order of
magnitude. I will discuss this point further later.

Since the power in a mode falls off rapidly away from the center frequency, the mode
parameter fitting needs to use only a small range of frequencies around the expected frequency.
Indeed it may be shown (Schou, 1993) that for frequency ranges of only a few times the mode
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linewidth, the loss in potential accuracy is fairly small. This fact, combined with the rapid
variation of the frequency with m due to the average solar rotation rate, means that at each
frequency only a certain range in m needs to be considered, this leads to a very significant
reduction in the computing time, and also has the desirable side-effect of removing the near
singularity of the covariance matrix, which can otherwise lead to numerical problems. If the
linewidth is large (which is the case for high frequency modes) it is necessary to restrict the
frequency range to the point of reducing the accuracy of the parameter determinations, or to
get around these numerical problems in some other way. Some possible ways of doing this will
be discussed later. Another convenient result is that, at least for the types of masks generally
used, the even and odd m’s can be treated separately; there is no crosstalk between even and

- odd m’s.
(tv) Diagnostics

Given all the aspects taken into account and the associated potential problems, a natural
question to ask is whether it is possible to find diagnostics telling if the real data have the
expected statistical properties. In particular, it would be useful to know if the crosstalks have
been incorrectly estimated. It turns out that it is indeed possible to find such fairly general
diagnostics. At a given frequency point the observed values y should have a covariance E given
by expression (6). If a matrix D exists such that E = DDT, it may be shown that the covariance
matrix of y' = D~y is the identity matrix. Since E is a covariance matrix, and is thus positive
semidefinite, such a matrix D always exists. Moreover, the standard way to solve a linear system
involving a positive definite matrix is to use a Cholesky decomposition, which as a byproduct
produces such a matrix D. Notice that while the Cholesky decomposition produces one such
matrix, several other matrices generally exist, and it is not clear that this is the most desirable
D to use. If E is indeed a good estimate of the true covariance matrix, as it should be if the
model is correct and the iteration converged, y’ should be a vector of (hopefully) independent
unit variance numbers at each frequency point. If on the other hand the model is incorrect
and the crosstalks have been incorrectly estimated, the elements in the vector y' are likely to
be correlated. Checking this vector for correlations should thus be a good test for problems
with the crosstalks. Unfortunately it is not easy to test a single realisation of a random vector
for correlations, especially not to get numbers describing the degree and characteristics of the
correlations. In any case a few numbers characterizing all the frequency points are likely to be
more useful than a series of numbers at each frequency point. Since the crosstalks most likely to
be significantly incorrect (that is likely to lead to problems) are those between close m’s, a way
proceed is to calculate the covariance between all pairs of points at all the individual frequencies
with Am of 0, 2, 4,.... That is

i Zim-mjzam Y (%) my (%) m
Zi Z]m-—m']:Am 1 !

where y'(v;) = D(a,v;)"Yy(v;) with D(a,v;)D(a,15)T = E(a,;). As there is no crosstalk

(20)
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between the even and odd m’s and we have only used the even m’s in the analysis of real data,
only even Am’s have been considered.

Another diagnostic that has been useful is to simply check power as a function of m is the
same in the real data and the best fit model spectrum. Since the number of m’s is large for high
I’s the ratio of the observed to the fitted power has been expanded in polynomials in m/l. To

Eu.- used % -
Ev; used 1 (21)

and expand using the polynomials used for the a-coefficients

= E b P (m)/1. (22)

be specific define

Qm =

If the power is correct as a function of m, bp = 1 and b; = 0 for ¢ > 1. This diagnostic has
been particularly useful in showing the effect of a wrong assumed asymmetry of the point spread
function (see eg. Schou and Brown, 1993) used in the calculation of the crosstalks (which affects
different m’s at the same [ differently). s

Obviously it is possible to devise a whole series of other diagnostics, but these two are
examples we have found particularly useful. Unfortunately the fact that the diagnostics all have
the correct values does not prove that there are no systematic errors, just as incorrect values do
not mean that the fitted parameters are all wrong.

Results

Given the increased computational burden using this method relative to least squares fitting
of power spectra, it is obviously useful to see how well the method does on artificial data. For
this and other purposes we have developed a program to generate realistic artificial time-series
(see Schou and Brown, 1993). Figures 3 through 8 illustrate various aspects of the performance
of the analysis scheme both on fake data generated by this program and on real data.

As the number of things one can check is very large, only selected results have been shown
here. We are currently in the process of systematically analysing artificial data with different
analysis programs, including the one presented here, to compare the different algorithms, and
plan to publish our results shortly.

Figure 3 shows how the fitted parameters from a run with artificial data compare to the
‘true’ input parameters to the fake data generation program.

In addition to the errors in the determined parameters, the observed scatter and the rms
errors determined internally in the program from the second derivatives of S have been shown
in figure 4. In order to be able to use a significant number of realizations, a low [ of 6 was used.
This allows the scatter to be determined with a reasonably good accuracy.

Shown in figure 5 are the values of the first diagnostic discussed for a set of artificial data
and a set of real data. Figure 6 shows the change in this diagnostic caused by a change in the
assumed apodization.



Values of the second diagnostic discussed are shown in figure 7 for the same sets of artificial
and real data as used for figure 5. The change in one of the second type of diagnostics, caused
by a change in the assumed PSF, is shown in figure 8. The main change was in the horizontal
width of the PSF.

Discussion
(i) Performance on real and artificial data

As can be seen from figure 3, the program generally estimates the mode parameters quite
accurately, when used to analyze artificial data. There are, however, small but very (statistically)
significant errors for the mode amplitudes and linewidths. Note that the length of the timeseries
used was such that the each frequency bin had a size of ~ 0.13uHz, and that it is therefore
not too surprising that it is difficult to estimate the linewidths for the lowest frequency modes
where the linewidths are comparable to this bin size. At 1700uH z, for instance, w = 0.2uH z,
depending somewhat on /. For these modes most of the power is in a few frequency bins close
to the mode frequency making it very difficult to estimate the linewidth.

For the high frequency modes, where the linewidths are very large, it was necessary to limit
the size of the fitting window to less than several times the linewidths (ﬁorma.]ly 5 times the
linewidth was used). This was done in order to reduce the size of the covariance matrix, and is
presumably the main reason for the large errors in parameter values at those frequencies. The
most worrisome of these errors is the error in a; for the high [, high frequency modes. However,
as these modes have been difficult to fit in the real data, presumably due to the increased
linewidth and low S/N, a limited effort has until now been put into trying to find the cause of
this problem. Clearly it will be necessary to look for the cause of this problem at some point.

The error estimates shown on figure 4 are generally fairly good. As expected (since 65% of
the observations have been thrown away) the scatter is generally somewhat larger for the gapped
series than for the ungapped series. Even taking into account the fact that only approximately
100 realisations were used, leading to some uncertainties in the estimates of the scatter, it
is obvious that the estimates are not perfect, even for the ungapped series. This is not too
surprising. One reason is that the second derivatives of the merit function S (the inverse of
which is the covariance matrix) is only calculated approximately and normally only in the first
iteration (due to the computational expense). Also note that the estimates are generally less
accurate for the gapped series than for the ungapped series. A reason for this is probably that
the correlations between different frequency points due to the time-gap structure are not taken
into account.

Examples of the first type of diagnostic discussed for artificial time-series are shown in figure
5. As can be seen this diagnostic is indeed close to the expected values for the artificial data.
Figure 6 shows the change in this diagnostic caused by a a change in the assumed crosstalks
(wrong assumed apodization), and as can be seen this diagnostic does indeed indicate that
something is wrong. Unfortunately this diagnostic is not too informative as to what is the exact
cause of the problems. .
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Examples of the second type of diagnostic are shown in figure 7. The effect of changing
the width of the assumed PSF shown in figure 8 is very obvious at high /. In this case the
exact cause of the change is easier to identify. A larger smearing in the horizontal direction
preferentially degrades the sensitivity to modes with high m compared to those with low m at a
given [, causing a change in the dependence of observed power on m. It is interesting, however,
that the changes in some of the parameters, like the mode frequencies and the a-coefficients, are
very small, though not totally statistically insignificant.

While it is difficult to look for systematic errors in the real data, where the correct parameter
values are unfortunately not known, it is still possible to check whether the diagnostics have the
correct values. As can be seen from figures 5 and 7, the diagnostics are generally good for the
low I’s, while there are significant problems for high I’s. The likely cause for at least some of
these problems is the PSF (compare figures 7 and 8). For the analysis shown here, it is known
that the PSF was incorrectly estimated; in particular the extra degradation of the PSF caused
by an interpolation of the images was ignored.

Unfortunately, as described in Bachmann, Schou and Brown (1993), it still appears that
there is some sort of an instrumental/analysis problem with a; in the reduction of the real data,
the cause of which we have not been able to pinpoint. While the diagnostii:s shown in figures 5
and 7, indicate that some property of the oscillations or the instrument is incorrectly treated,
we have not been able to find the cause. Changing the PSF has, as already mentioned, an

insignificant effect on the a-coefficients.
(ii) Problems

As with most fitting procedures, the method described above will fail on occasion. The
failures can manifest themselves in a number of ways and have different causes. Perhaps the
most common failure is when trying to fit a mode drowned in the noise; these 'failures’ tend to be
easy to identify since the iteration typically will not converge or will give totally unrealistic mode
parameters. A more serious failure mode results when the initial guess is sufficiently wrong that
the procedure is not able to find the global minimum in S. An initial guess that is sufficiently
bad can also lead to the subsequent guesses being bad enough to give numerical problems. Also,
seriously erroneous assumed crosstalks can destabilize the fit. A particularly interesting failure
mode results when the uncertainty in the determined frequency is comparable to 1day~! and/or
the spacing to the neighbouring /, and the procedure locks onto one of the temporal sidelobes or
the neighbouring {. This failure is generally fairly easy to detect, as the frequencies are usually
obviously in error and several of the other parameters have atypical values.

A problem related to the failures is that of numerical problems. As mentioned earlier,
the individual m’s are so correlated that the covariance matrix is almost singular, at least
numerically. Given that only a subset of the m’s are used at any given frequency, this is only
a problem at high frequencies where the linewidths are large. The present solution, which is to
limit the frequency interval to the point of losing information, is not satisfactory. A possible
solution is to exclude certain m’s; since they are redundant, this procedure should lead to little
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loss of information and make the covariance less singular. This approach has not yet been tested.

Another way to fix the problem with the near singular covariance matrices would be to
‘regularize’ them by adding, say, a diagonal matrix with i'ery small elements, this is essentially
the same as to add the contribution from roundoff to the matrix, as this should behave as uncor-
related noise. In addition it should also be possible to bin the frequency points if the linewidths
are very large, which would reduce the computational burden of taking a large frequency interval

into account.
(iii) Some possible improvements

As mentioned earlier several features of the real solar time-series have been neglected here.
. Although some of the neglected features are likely to be unimportant, others may not be. Using
artificial time-series it has been possible to address, at least partially, some of the concerns,
while others are very difficult to test. Also some features are likely to have been overlooked.

One of the main neglected features of the time-series is the correlations introduced by the
time-gaps. It is not surprising that this leads to problems with error estimation, as illustrated in
figure 4. It may be argued that this is not a very significant problem, however, as it only affects
the error estimates. Unfortunately, ignoring the statistical effects can also lead to larger random
and systematic errors than could have been obtained with a proper statistical treatment. As
taking the correlations properly into account would require that a large number of frequencies
and thus m’s be considered simultaneously (that is a covariance matrix considering all of them,
leading to computational problems), there is probably not much that can be done, unless some
computational tricks can be found. For high S/N modes the information in the sidelobes is
generally redundant, and one probably does best by only analysing the main lobe. For low
S/N modes something can potentially be gained by considering the side-lobes, and one possible
shortcut is to analyze the individual peaks separately and form a weighted average, knowing
that the error estimates are highly unreliable. This has not been tried.

A problem related to that of correlations introduced by time-gaps is correlations introduced
by the possibly infrequent excitation of the modes. This also leads to correlations between
different frequency points. Unfortunately the statistics of the excitation are not very well known,
although some theoretical estimates have been made (Brown (1991), see also Brown et al.,
(1992)). For the present purpose the best assumption is probably that the excitation is very
frequent compared to the mode lifetime and that the individual points of the Fourier transform
are thus independent. On the other hand the infrequent excitation might actually be used for
improving the frequency estimates, as it means that the excitation, and thus the random nature
of the Fourier transforms, are not independent for different modes. Also the details of the
excitation are of considerable physical interest, as they relate to the physics of the convection.

Clearly the treatment of the crosstalk from modes with other I’s is less than ideal. The
problem is basically that the initial estimates for some of the other parameters for the other
modes may be significantly erroneous. When the main lobe of one of these other modes or

one of the temporal sidelobes happens to be close to the frequency of the target mode (which
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is the case for many !’s), this can lead to a significant feedback into the target mode. Some
examples of the degree of feedback are shown in Figure 9. Note that the changes have been
plotted as a function of v/L, as this determines the frequency spacing between modes with the
same n but / differing by 1. Also note that the crossing of the temporal sidelobes (which have a
spacing of 1 day™~! = 11.57uH z) from the neighbouring I’s occur at v/L ~ 31uHz. As can be
seen from figure 9, the feedback is generally fairly small, and the effects can thus, presumably,
be eliminated by iterating the process using the parameters determined in one iteration as the
initial estimates for the next iteration.

One thing that could be done about the feedback problem, at least for some of the param-
eters, is to let the parameters for modes other than the target mode follow those of the target
mode, in a fashion similar to the one implemented for the mode amplitudes. This is likely to
work, as initial parameter estimates for modes with the same n but slightly different ! are likely
err in the same direction. Unfortunately this means that the contribution from the other modes
must be calculated together with the derivatives with respect to the various parameters, which
would be very expensive. It may be possible to accurately calculate only the contributions in
each iteration, and to do an approximate calculation of the derivatives, but this has not been
attempted.

Until now the phase information has only been used to partly compensate for the crosstalk
among the m’s. It should be potentially useful to also use the phase information to partly
compensate for the crosstalk among the !’s, in particular for the modes where other I’s inter-
fere. Ideally one should fit for all (n,l,m)’s simultaneously, but that is clearly too expensive
computationally. Even fitting for a small range in ! at a time would be very difficult. There are
several problems with trying this. The size of the covariance matrix will increase considerably,
leading to a considerably increased computation time and possible numerical problems. Also,
it is generally the temporal sidelobes of the neighbouring modes that interfere, rather than the
main lobes, which creates some problems. For instance it is necessary to fit over the whole range
of all the interfering modes at once, leading to even bigger covariance matrices and the problems
associated with them. Finally since the phases and magnitudes are not independent between
the main lobe and the temporal sidelobes, the phases of the interfering temporal sidelobes are
probably best determined by looking at the main lobe and fitting all the frequencies simulta-

. neously, which (as already mentioned) is practically impossible. It may be possible to take at
least some of the contributions from neighbouring modes out by saving some of the statistical
information from previous iterations, but this has not been attempted.

A possible way around many of the problems associated with the near singular covariance
matrices and the leakage from neighbouring !'s is to modify the spatial masks used, so as to
reduce the unwanted leakages. This may increase the leakage from non interfering modes or
decrease the S/N. This modification of the masks may also be done by combining the time-
series or Fourier transforms, although that approach does not give one complete freedom in
choosing the masks. I have not studied this method in detail, but I am currently looking into
it, in particular in connection with low I’s, where it is likely to help with occasional interfering
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modes and where it is more computationally feasible than at higher I’s. The higher 's also have
the problem that they are generally affected by a fairly large number of other (I, m)’s and their
temporal sidelobes, due to the lower frequency spacing between adjacent I's.

Another problem relating to the contribution from modes other than the target mode is
that of modes with ! far from that of the target mode. These modes have small but, when
added up, signiﬁcant crosstalks into the target modes. As their frequencies and contributions
are essentially random, their total contribution has a power envelope like that of the p-modes.
The modes therefore lead to what looks like noise with a frequency dependency like that of
the envelope of the power distribution in the p-mode band. This may be the cause of the rise
observed in the background power in the p-mode band as illustrated in Figure 10 (see also Schou
- and Brown 1993). Modes with m outside the band used for the fitting (and which are currently
not used in the calculation of the covariance matrix) may also lead to problems, especially since
these modes are typically fairly close in frequency to the modes taken into account. These modes
may be the cause of some of the systematic errors in the a-coefficients shown in Figure 3. This
problem can of course be fixed by taking into account the contributions from more m’s, but this
is, as the solutions to many of the other problems mentioned, expensive camputationally.

The problem with the increased noise power in the p-mode band is related to the problem of
how to estimate the covariance matrix for the noise. To estimate the properties of the ’true’ noise
in the p-mode band it is desirable to use a piece of the spectrum without p-modes. This means
going to low and/or high frequencies. Given that 'modes’ are observed far above the acoustic
cut-off frequency and that the Nyquist frequency generally is not very high, it is difficult to
use high frequencies. At low frequencies there is presumably only a very low contribution from
p-modes, but it is likely that the source of the dominant noise is not the same as in the p-mode
band, and that it may therefore have other statistical properties. If, as Figure 10 seems to
indicate, the noise in the p-mode band is in part due to unresolved modes, then perhaps the
noise estimate ought not to be *mode-free’, or even the same for all frequencies. Calculating the
noise covariance matrix for the Fourier Tachometer data from a model of the noise on the solar
disk has failed, probably due to problems in finding the noise as a function of position on the
disk and spatial correlations in the noise. The preferred method is, at the moment, to estimate
the noise properties from the high frequency noise.

Obviously the fitting methods can be improved in other directions than the one described
here. In particular Duvall et al. (1993) have considered methods in which one fits all frequency
points in an interval at a given (I,m) simultaneously, instead of all m’s and frequencies in a
narrow range, as considered here. One possible variation of this method uses that fact that the
spacings between neighbouring modes are well known, and can be held fixed in the iterations
or fitted for as a parameter if the frequency interval used is sufficiently large. Although not
implemented, the method just described has the advantage that it should be possible to treat
the correlations introduced by the time gap structure, particularly if the frequency interval is not
too large. On the other hand, while the temporal sidelobes only affect certain modes and will be
a minor problem for future observations, such as those from the GONG network, the correlations
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among m’s affect all modes. The magnitude of the leakage between different m’s and I’s for
that matter, depends on the observation technique and the spatial masks used. In particular
Duvall et al. considered intensity observations, which are less affected by these problems than
the velocity observations we have considered, and that will be used for future instruments such
as the GONG network and the SOI/MDI instrument on the SOHO satellite.

Recent results from Duvall et al. (1993) seem to show that the line profiles are not given by
Lorenzians, but are instead somewhat asymmetric. While this obviously changes the function
fitted for and the derivatives, it should be possible to incorporate into the procedure presented

here.
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Figure captions

Figure 1. A scatter plot showing the values of the time-series for (I,m) = (30,2) versus the
values of (I,m) = (30,0). The data are from part of an observation run with the Fourier
Tachometer from 1989,

Figure 2. Contour plots of the function S. The independent variables on each of the sub plots
are indicated on those. The values of the other independent variables have been held at a value
close to the minimum. On each plot the minimum has been indicated with a cross of size 1o.
On the upper left plot, the contour spacing is 5, on the upper right hand plot the spacing is 10
and on the lower two plot the spacing is 2. The zero point of the frequency scale was chose to
be at the frequency bin closest to the minimum. The units for the amplitudes, linewidths and

background power are arbitrary.

Figure 3. Results of runs with artificial data. All results are from a run with 10 </ < 89. On
the plot of a;, modes with 10 < [ < 49 are indicated with +, while modes with 50 < ! < 89
have been indicated with diamonds. The length of each time-series was 100800 timesteps of 75s
each. The time gap structure is from a Fourier Tachometer run from 1989 with a duty cycle of
34.94%, and should thus represent realistic single site time gaps.

Figure 4. The average internally estimated standard errors on the mode frequency compared to
the scatter determined from an analysis of 110 time series of artificial data for [ = 6. Solid lines
indicate the average internally estimated standard error for ungapped time-series, 4+ the actual
scatter for the ungapped runs, dotted lines the estimates for gapped time series and diamonds
the actual scatter for the gapped time-series. The length of the time series and the gaps were
as in figure 3. For some modes the analysis program failed for some of the realisations, leading
to less than 110 realisations from which to determine the scatter.

Figure 5. Values of the first type of diagnostics discussed for the artificial data from figure 3
and for approximately 3 months worth of data from the Fourier Tachometer. Only the values

for Am = 2 have been shown.

Figure 6. The change in the first diagnostic caused by a wrong assumed crosstalk. The original
crosstalks assumed (correctly) that the part of the images with a horizontal distance of more
than 0.5R, where R is the radius of the solar image had been cut away. The incorrect crosstalks
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were calculated assuming that everything outside of 0.6 R was cut away. Again only the change
for Am = 2 has been shown. Results are from the data used for figure 5, but using only the
first month of data.

Figure 7. As figure 5, but for the second type of diagnostics discussed. Only the terrm for P;
has been shown. '

Figure 8. The change in the mode amplitude (left plot) and the second diagnostic (right hand
plot) caused by a change in the assumed PSF. The main change in the PSF was the horizontal

size changed. The data used was that used for figure 6.

Figure 9. Examples of feedback from other modes into the target mode, that is the change
induced in the parameter indicated by changing its value for all other modes than the target
mode (by an amount shown). The results are for the data used for figure 6. The frequency
change has been scaled by 4/w, where w is the FWHM of the mode, to shown the change caused
by a perturbation of 1uHz.

Figure 10. The noise as a function of frequency for a dataset from 1989, only 30 </ < 50 has
been shown. The two distinct set of points are due to the even and odd I’s having different noise

characteristics. Only even m’s were used in the fitting process.
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