This directory contains the 72d results used for the Schou 1999 (ApjL, 523, 181) paper updated by results from subsequent 72d pieces. New results typically appears within a couple of weeks of the end of a 72d period. Please be aware that there are some known systematic errors in these data. See, for example Schou, et al. (2002) http://adsabs.harvard.edu/abs/2002ApJ...567.1234S Larson and Schou (2008,2009) http://adsabs.harvard.edu/abs/2008JPhCS.118a2083L http://adsabs.harvard.edu/abs/2009ASPC..416..311L You may want to reference the Schou 1999 paper when you use the data or my Dissertation (1992, Aarhus University, Denmark) which contains details of the analysis. Other details, which were previously in a separate file, have been edited and are now appended at the end of this file. The results here were reweeded on Aug. 21, 2002 after the discovery of a bug which led to good modes being rejected, particularly at the later times. The rejected modes were a combination of f modes and modes with l<3. No significant differences have been observed in inversions of the f modes. The addition of the low degree modes may lead to an improvement in the results in the deep interior. In order to distinguish the reweeded results from the original ones the new ones use names with "qr" instead of the "qw" for the original version. For reference the original sets are kept in http://sun.stanford.edu/~schou/anavw72x.old and http://sun.stanford.edu/~schou/anavw72y.old NOTE: These directories were restored from backup on 2014.05.14, but are believed to be identical to those previously there. Please report any problems! References/acknowledgements/co-authorships appreciated. Files in the directory "obsolete" are older versions which should not be used for analysis. They are kept for reference. This directory is currently empty. There are four file formats you are likely to encounter for this and other datasets. There is a code (denoted by xxx in the following) for the dataset used, followed by a day number (eg. 1216) for the nominal beginning date and .18 or .36 when more than the standard 6 a-coeff were fitted. The code is basically an iteration number. The q is for 'quick': Modes with dnu/dl less than twice the linewidths are not fitted. They don't converge anyway. Also many codes have a w for 'weeded'. If you wonder how the weeding was done you can check out weed.pro. Full listing (files starting with 'm') have the following columns: l n \nu amp FWHM back x sigma(\nu), ..., sigma(x) a_1, a_2, ..., a_n, sigma(a_1), ..., sigma(a_n). This is the only format for which unweeded files are available. Frequency files (named freqxxx): l n \nu sigma(\nu) Splitting files (named splitxxx): l n \nu a_1, a_3, ..., a_n, sigma(a_1), ..., sigma(a_n) Even splitting files (named splitexxx): l n \nu a_2, a_4, ..., a_n, sigma(a_2), ..., sigma(a_n) 2D splitting files (named splitxxx.2d): The format used for the workbench. The abbreviations used are: l: degree of mode n: order of mode \nu: Frequency of mode in micro Hz amp: Mode amplitude. Units TBD FWHM: Full width at half maximum power for the Lorenzian in micro Hz back: Log of the background power in units TBD x: something you don't want to know a_i: a-coefficients in nHz. The polynomials used are those from Schou et al., ApJ, 433, 389 (1994). a_1 has had 31.7nHz added sigma(something): The estimated standard deviation of something. 0 means that something has not been determined Basic info for the different sets is: day# Duty cycle cg First time Last time 1216 0.894888 1254.5535 1216.0000 1287.9993 1288 0.964024 1324.0486 1288.0000 1359.9993 1360 0.963821 1395.5164 1360.0000 1431.8625 1432 0.976331 1468.3889 1432.0861 1503.9993 1504 0.951842 1540.0106 1504.0000 1575.9993 1576 0.980941 1612.0496 1576.0000 1647.9993 1648 0.970216 1683.4957 1648.0000 1719.9993 1720 0.972550 1755.3999 1720.0000 1791.9993 1792 0.979331 1828.1652 1792.0000 1863.9993 1864 0.969454 1900.2265 1864.0000 1935.9993 1936 0.883632 1968.1953 1936.0000 2000.4993 2116 0.731163 2151.3428 2121.0000 2180.7222 2224 0.894406 2261.8088 2224.8333 2295.9993 2296 0.981925 2332.1015 2296.0000 2367.9993 2368 0.986237 2404.0228 2368.0000 2439.9993 2440 0.929610 2475.7552 2440.0000 2510.7222 2512 0.869608 2550.1201 2513.8257 2583.7396 2584 0.985754 2620.0613 2584.0000 2655.9993 2656 0.993866 2691.9606 2656.0000 2727.9993 2728 0.988243 2764.0435 2728.0000 2799.9993 2800 0.985513 2835.8161 2800.0000 2871.9993 2872 0.946730 2907.9036 2872.0000 2943.9993 2944 0.985156 2980.2148 2944.0000 3015.9993 3016 0.989988 3052.0083 3016.0000 3087.9993 3088 0.963937 3123.9474 3088.0000 3159.9993 3160 0.991213 3195.9867 3160.0000 3231.9993 3232 0.971190 3268.5987 3232.0000 3303.9993 3304 0.858835 3341.9927 3304.0000 3375.9993 3376 0.986651 3411.9213 3376.0000 3447.9993 3448 0.978164 3483.8322 3448.0000 3519.9993 3520 0.991059 3555.9585 3520.0000 3591.9993 3592 0.993740 3627.9955 3592.0000 3663.9993 3664 0.991821 3700.0017 3664.0000 3735.9993 3736 0.981848 3771.9357 3736.0000 3807.9993 3808 0.822135 3845.0697 3808.0000 3879.9993 3880 0.981047 3916.1235 3880.0000 3951.9993 3952 0.877990 3984.4198 3952.0000 4023.9993 4024 0.986063 4059.8692 4024.0000 4095.9986 4096 0.782272 4136.6398 4096.0958 4167.9993 4168 0.896721 4205.0667 4168.0000 4239.9993 4240 0.852836 4274.7067 4240.0000 4311.9993 4312 0.969078 4347.7371 4312.0000 4383.9993 4384 0.991136 4420.0041 4384.0000 4455.9993 4456 0.991387 4492.1512 4456.0000 4527.9993 4528 0.983439 4564.1555 4528.0000 4599.9993 4600 0.988899 4635.9916 4600.0000 4671.9993 4672 0.984983 4707.9621 4672.0000 4743.9993 4744 0.987905 4779.9827 4744.0000 4815.9993 4816 0.990316 4852.1965 4816.0000 4887.9993 4888 0.962095 4923.3344 4888.0000 4959.9993 4960 0.987616 4995.9646 4960.0000 5031.9993 5032 0.989824 5067.9538 5032.0000 5103.9993 5104 0.895409 5139.6239 5104.0000 5175.9993 5176 0.975511 5212.5250 5176.0000 5247.9993 5248 0.985291 5284.2602 5248.0000 5319.9993 5320 0.988223 5356.0203 5320.0000 5391.9993 5392 0.965191 5427.6297 5392.0000 5463.9993 5464 0.985397 5499.7606 5464.0000 5535.9993 5536 0.995563 5571.9797 5536.0000 5607.9993 5608 0.988580 5644.1612 5608.0000 5679.9993 5680 0.988165 5716.0823 5680.0000 5751.9986 5752 0.982658 5787.8460 5752.0000 5823.9986 5824 0.983198 5859.8084 5824.0000 5895.9986 5896 0.996210 5931.9835 5896.0000 5967.9993 5968 0.951408 6002.7662 5968.0000 6039.9993 6040 0.708517 6081.3498 6040.0000 6111.9993 6112 0.985436 6147.9973 6112.0000 6183.9993 6184 0.989120 6219.8531 6184.0000 6255.9986 6256 0.991667 6292.1109 6256.0000 6327.9993 6328 0.987780 6364.3516 6328.0000 6399.9993 6400 0.951755 6435.8257 6400.0000 6471.9986 6472 0.878752 6507.6712 6472.0000 6543.9993 6544 0.731906 6575.3462 6544.0000 6615.9993 6616 0.812037 6646.2179 6616.0000 6675.9722 Day number conversions from time_index: Date day# day 1996.05.01_00:00:00_TAI 1751040 29184 1216 1209600000.000 4864 40 day 1996.07.12_00:00:00_TAI 1854720 30912 1288 1215820800.000 5152 42 day 1996.09.22_00:00:00_TAI 1958400 32640 1360 1222041600.000 5440 45 day 1996.12.03_00:00:00_TAI 2062080 34368 1432 1228262400.000 5728 47 day 1997.02.13_00:00:00_TAI 2165760 36096 1504 1234483200.000 6016 50 day 1997.04.26_00:00:00_TAI 2269440 37824 1576 1240704000.000 6304 52 day 1997.07.07_00:00:00_TAI 2373120 39552 1648 1246924800.000 6592 54 day 1997.09.17_00:00:00_TAI 2476800 41280 1720 1253145600.000 6880 57 day 1997.11.28_00:00:00_TAI 2580480 43008 1792 1259366400.000 7168 59 day 1998.02.08_00:00:00_TAI 2684160 44736 1864 1265587200.000 7456 62 day 1998.04.21_00:00:00_TAI 2787840 46464 1936 1271808000.000 7744 64 day 1998.07.02_00:00:00_TAI 2891520 48192 2008 1278028800.000 8032 66 day 1998.09.12_00:00:00_TAI 2995200 49920 2080 1284249600.000 8320 69 day 1998.10.18_00:00:00_TAI 3047040 50784 2116 1287360000.000 8464 70 day 1998.11.23_00:00:00_TAI 3098880 51648 2152 1290470400.000 8608 71 day 1998.12.29_00:00:00_TAI 3150720 52512 2188 1293580800.000 8752 72 day 1999.02.03_00:00:00_TAI 3202560 53376 2224 1296691200.000 8896 74 day 1999.04.16_00:00:00_TAI 3306240 55104 2296 1302912000.000 9184 76 day 1999.06.27_00:00:00_TAI 3409920 56832 2368 1309132800.000 9472 78 day 1999.09.07_00:00:00_TAI 3513600 58560 2440 1315353600.000 9760 81 day 1999.11.18_00:00:00_TAI 3617280 60288 2512 1321574400.000 10048 83 day 2000.01.29_00:00:00_TAI 3720960 62016 2584 1327795200.000 10336 86 day 2000.04.10_00:00:00_TAI 3824640 63744 2656 1334016000.000 10624 88 day 2000.06.21_00:00:00_TAI 3928320 65472 2728 1340236800.000 10912 90 day 2000.09.01_00:00:00_TAI 4032000 67200 2800 1346457600.000 11200 93 day 2000.11.12_00:00:00_TAI 4135680 68928 2872 1352678400.000 11488 95 day 2001.01.23_00:00:00_TAI 4239360 70656 2944 1358899200.000 11776 98 day 2001.04.05_00:00:00_TAI 4343040 72384 3016 1365120000.000 12064 100 day 2001.06.16_00:00:00_TAI 4446720 74112 3088 1371340800.000 12352 102 day 2001.08.27_00:00:00_TAI 4550400 75840 3160 1377561600.000 12640 105 day 2001.11.07_00:00:00_TAI 4654080 77568 3232 1383782400.000 12928 107 day 2002.01.18_00:00:00_TAI 4757760 79296 3304 1390003200.000 13216 110 day 2002.03.31_00:00:00_TAI 4861440 81024 3376 1396224000.000 13504 112 day 2002.06.11_00:00:00_TAI 4965120 82752 3448 1402444800.000 13792 114 day 2002.08.22_00:00:00_TAI 5068800 84480 3520 1408665600.000 14080 117 day 2002.11.02_00:00:00_TAI 5172480 86208 3592 1414886400.000 14368 119 day 2003.01.13_00:00:00_TAI 5276160 87936 3664 1421107200.000 14656 122 day 2003.03.26_00:00:00_TAI 5379840 89664 3736 1427328000.000 14944 124 day 2003.06.06_00:00:00_TAI 5483520 91392 3808 1433548800.000 15232 126 day 2003.08.17_00:00:00_TAI 5587200 93120 3880 1439769600.000 15520 129 day 2003.10.28_00:00:00_TAI 5690880 94848 3952 1445990400.000 15808 131 day 2004.01.08_00:00:00_TAI 5794560 96576 4024 1452211200.000 16096 134 day 2004.03.20_00:00:00_TAI 5898240 98304 4096 1458432000.000 16384 136 day 2004.05.31_00:00:00_TAI 6001920 100032 4168 1464652800.000 16672 138 day 2004.08.11_00:00:00_TAI 6105600 101760 4240 1470873600.000 16960 141 day 2004.10.22_00:00:00_TAI 6209280 103488 4312 1477094400.000 17248 143 day 2005.01.02_00:00:00_TAI 6312960 105216 4384 1483315200.000 17536 146 day 2005.03.15_00:00:00_TAI 6416640 106944 4456 1489536000.000 17824 148 day 2005.05.26_00:00:00_TAI 6520320 108672 4528 1495756800.000 18112 150 day 2005.08.06_00:00:00_TAI 6624000 110400 4600 1501977600.000 18400 153 day 2005.10.17_00:00:00_TAI 6727680 112128 4672 1508198400.000 18688 155 day 2005.12.28_00:00:00_TAI 6831360 113856 4744 1514419200.000 18976 158 day 2006.03.10_00:00:00_TAI 6935040 115584 4816 1520640000.000 19264 160 day 2006.05.21_00:00:00_TAI 7038720 117312 4888 1526860800.000 19552 162 day 2006.08.01_00:00:00_TAI 7142400 119040 4960 1533081600.000 19840 165 day 2006.10.12_00:00:00_TAI 7246080 120768 5032 1539302400.000 20128 167 day 2006.12.23_00:00:00_TAI 7349760 122496 5104 1545523200.000 20416 170 day 2007.03.05_00:00:00_TAI 7453440 124224 5176 1551744000.000 20704 172 day 2007.05.16_00:00:00_TAI 7557120 125952 5248 1557964800.000 20992 174 day 2007.07.27_00:00:00_TAI 7660800 127680 5320 1564185600.000 21280 177 day 2007.10.07_00:00:00_TAI 7764480 129408 5392 1570406400.000 21568 179 day 2007.12.18_00:00:00_TAI 7868160 131136 5464 1576627200.000 21856 182 day 2008.02.28_00:00:00_TAI 7971840 132864 5536 1582848000.000 22144 184 day 2008.05.10_00:00:00_TAI 8075520 134592 5608 1589068800.000 22432 186 day 2008.07.21_00:00:00_TAI 8179200 136320 5680 1595289600.000 22720 189 day 2008.10.01_00:00:00_TAI 8282880 138048 5752 1601510400.000 23008 191 day 2008.12.12_00:00:00_TAI 8386560 139776 5824 1607731200.000 23296 194 day 2009.02.22_00:00:00_TAI 8490240 141504 5896 1613952000.000 23584 196 day 2009.05.05_00:00:00_TAI 8593920 143232 5968 1620172800.000 23872 198 day 2009.07.16_00:00:00_TAI 8697600 144960 6040 1626393600.000 24160 201 day 2009.09.26_00:00:00_TAI 8801280 146688 6112 1632614400.000 24448 203 day 2009.12.07_00:00:00_TAI 8904960 148416 6184 1638835200.000 24736 206 day 2010.02.17_00:00:00_TAI 9008640 150144 6256 1645056000.000 25024 208 day 2010.04.30_00:00:00_TAI 9112320 151872 6328 1651276800.000 25312 210 day 2010.07.11_00:00:00_TAI 9216000 153600 6400 1657497600.000 25600 213 day 2010.09.21_00:00:00_TAI 9319680 155328 6472 1663718400.000 25888 215 day 2010.12.02_00:00:00_TAI 9423360 157056 6544 1669939200.000 26176 218 day 2011.02.12_00:00:00_TAI 9527040 158784 6616 1676160000.000 26464 220 day 2011.04.25_00:00:00_TAI 9630720 160512 6688 1682380800.000 26752 222 day 2011.07.06_00:00:00_TAI 9734400 162240 6760 1688601600.000 27040 225 ----- Various details ----- Window funtion generation: After the SHTs have been generated the first step is to verify that things went OK and to make a window function. To do this the time series for l=0 is first examined to find any days for which the duty cycle is less than 95%. For each of these days the SOHO and MDI logs are examined to find the cause and the processing is, if needed, redone. The window function is first set to 1 for the points for which we have data and zero for the missing points. The sum over m of the square of the SHT coefficients are then calculated for each minute for l=0,1,2,5,10,20,50. The resulting time series, as well as the raw time series for l=0 and 1 are then examined for clear outliers, which are set to zero in the window function. The criterion for what constitutes an outlier is obviously somewhat subjective, but the majority of the outliers are either very large or the cause easily identifiable. Typical causes include ISS openings, station keeping maneuvers, momemtum management maneuvers, spacecraft rolls, offpoints and similiar events. Times for such events are also found and the window function zeroed. The above mentioned time series are then examined for any additional outliers which are also zeroed. Again this is somewhat subjective, but typically none or only a few points are removed at this point. Given the nature of the data (onboard binned) it is hard to verify, but cosmic ray hits are a likely cause for at least some of the unexplained outliers. Examination of full disk (unbinned) data seem to confirm this. Finally, due to a shortcoming of the subsequent processing, any event causing a discontinuity in the data caused the window function to be set to zero to the nearest day boundary. Peakbagging: The basic references for the peakbagging are given above. For all iterations modes for which there are other modes within 2 in l and within two linewidths in frequency are not fitted. This is essentially a stronger version of the dnu/dl stability criterion mentioned above. For all but the final iteration only the first 6 a coefficients are fitted. For the first iteration the input guess is set to the final fit of the previous 72d series. Any modes which do not converge are retried with the noise perturbed by -1 (in log noise). The resulting set of fits is then examined and outliers are rejected. Outlier are found by examining the 6 a coefficients, the amplitude and the linewidth. Also, any points with unusually large error bars are rejected. This is done manually and is obviously somewhat subjective. However, tests indicate that the fits of modes other than the ones rejected are generally only marginally affected, the exception being when an outlier has absurd values (like a very large amplitude or linewidth). As the iteration progress wider and wider criteria for outliers are applied. The remaining modes are then used to predict the mode parameters for the modes not fitted or which were rejected due to lack of convergence or outlier status. The fitting is then repeated as above for the second iteration. For the subsequent iterations only the modes which have not converged (to within 0.1 sigma) or for which the modes with the same n and l different by +/-1 have not converged are generally fitted. Also, modes are high l or at the end of the ridges, which are unlikely to ever converge, may be excluded. These remaining modes are then combined with those from the previous iteration (or ones before if not fitted in that) to make the guesses for the next iteration. For the weeding of all but the first set the values from the previous iteration(s) are examined to understand the spread of the acceptable values. Once almost all modes have converged (typically after about 8 iterations) a fit is done of all modes (subject to the linewidth criterion). If more than a few modes in the areas where convergence is expected are not converged those modes are then iterated one more time. For the final fit all modes are again fitted. Also fits with 18 and 36 a coefficients are performed. To make the weeded set of modes (for 6 a coefficients) modes differing by more than 0.25 sigma in any parameter are rejected. Also, modes for which the linewidth is smaller than 1/(72 days) have all error estimates jacked up by a factor of the square root of 1/(72 days) to the estimated width. This prevents absurdly low error estimates caused by low linewidths (in the region where they can't be reliably estimated). The factor is that expected from an analytic expression. To weed the 18 and 36 parameter sets modes for which the difference to the 6 parameter case is larger than 2 sigma (estimated for 18 parameters) or for which the estimated errors have increased by a factor of more than 2 are rejected. Note that the unweded and unmodified sets are available.