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Abstract

Basic methods by which the internal structure and dynamics of the Sun can be inferred from observed frequencies of
solar oscillations and acoustic travel times are discussed. The methods for inverting the oscillation frequencies are based
on a variational formulation of the adiabatic eigenvalue problem for a star. The inversion technique formulated in terms
of linear integral constraints provides estimates of localized averages of properties of the solar structure, such as density
and sound speed, helium abundance in the convection zone for a given equation of state, and, in addition, the estimates
for the internal rotation rate. The method of inverting acoustic travel times employs a geometrical ray approximation and
provides 3D images of solar convective cells, active regions and sunspots. The information about the global and local
structures and 
ow velocities in the solar interior is important for understanding solar evolution and mechanisms of solar
activity. The high-resolution helioseismology projects from space provide a tremendous amount of data, the interpretation
of which is increasingly challenging and requires the development of e�cient inversion methods and algorithms. c© 1999
Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Helioseismology provides a unique tool to probe the internal structure and dynamics of a star.
The information about the thermodynamic and magnetic properties and internal rotation and 
ows
is obtained by inverting the frequencies and travel times of solar oscillations. This information is
important for understanding the solar constitution and evolution, processes of the energy generation
and transport, and mechanisms of the 22-year cycle of solar activity which a�ects Earth’s space
environment.
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The Sun’s interior consists of two main regions: the inner radiative zone where the solar energy
is transported by radiation and the outer zone of convective energy transport which occupies ap-
proximately 30% of the solar radius. The upper convective boundary layer is believed to be the
place where the solar oscillations are excited. The excitation mechanism is stochastic. Predominantly
excited waves are acoustic and surface gravity waves with oscillation periods of 3–10 min in a wide
range of wave numbers. The combined amplitude of the oscillations is about 200 m s−1.
The oscillations are usually observed on the solar surface by measuring the Doppler shift of solar

absorption lines formed in the lower part of the solar atmosphere. There are numerous ground-based
and space projects to observe solar oscillations. The most prominent projects are the GONG (Global
Oscillation Network Group with six observing stations around the globe) [32] and the SOI-MDI
(Solar Oscillation Investigation — Michelson Doppler Imager) on the space solar observatory SOHO
[66]. The data from these experiments have provided detailed information about the internal structure
and rotation of the Sun [29,48,68].
There are two basic approaches to infer solar properties from the oscillation data. The �rst ap-

proach is to study the resonant properties of the solar interior by determining the eigenfrequencies
of the oscillations (e.g. [63]). The second approach is to measure and invert the wave travel times
between di�erent points on the surface [18]. Because of the stochastic nature of solar oscillations sub-
stantial spatial and temporal averaging of data is required to measure the frequencies and travel times
accurately. The frequencies of solar eigenmodes are obtained from the oscillation power spectra, an
example of which is shown in Fig. 1. The travel times are measured from cross-covariance of oscil-
lation signals at di�erent distances (Section 4). These two approaches are complementary: the �rst
is mainly used to infer large-scale properties through the whole Sun, whereas the second has been
useful for determining local properties of convective and magnetic structures in the subsurface layers.
In this review, I discuss the basic mathematical and computational techniques of helioseismology.

Most of these techniques are based on a perturbation analysis which results in linear integral relations
between the measured properties of solar oscillations (mode frequencies and travel times) and the
interior properties of the Sun. The solar properties are then inferred by standard linear inversion
techniques, e.g. by the regularized least-squares method [77] or by the optimally localized averaging
technique [4]. The helioseismic inversions deal with large data sets which consist typically of 103–
104 data points for the structure inversions, and of 105–106 data points for inversions for solar
rotation and local properties. Therefore, the development of e�cient methods and algorithms is very
important in this �eld.
Solar p modes can be classi�ed in terms of three integer parameters, which represent the spatial

structure of their eigenfunctions. Degree l and azimuthal order m of the spherical harmonics describe
the angular structure of the eigenfunctions, and integer n, called radial order, labels the modes
according to their radial structure and normally is the number of nodes in the radial direction. For
a spherically symmetric stellar model, the mode eigenfrequencies, !nlm, are degenerate with respect
to m. Rotation and asphericity of the Sun break the symmetry. Therefore, the frequencies of di�erent
n and l are split into multiplets, in which the central frequency of m= 0 (zonal modes) represents
the spherically symmetric component of the solar structure. The modes with nonzero m are shifted
with respect to the central frequency. The frequency shift depends on the value of m and on solar
rotation and other nonsymmetrical phenomena, like convection and magnetic �eld. In the �rst-order
approximation, the average multiplet frequency is equal to the eigenfrequency of the zonal mode of
m=0. The average frequencies are usually provided in helioseismic data, because those are estimated
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Fig. 1. Power spectrum (frequency-angular degree diagram) obtained from the MDI data [48]. The bright ridges show
the oscillation power of solar modes: the lowest and weakest ridge corresponds to the fundamental mode of the Sun, the
ridge above it represents the �rst acoustic mode, and the higher ridges are higher radial overtones of acoustic oscillations.
The angular degree, l, is that of the spherical harmonic function describing the surface variation of the modal pattern. It
is essentially a spatial wavenumber.

with better accuracy than the zonal-mode frequencies. However, in the second-order approximation
there is a systematic shift between the average frequencies and corresponding eigenfrequencies of
m = 0 modes. These shifts have to be taken into account when small-amplitude features of solar
structure are studied [19].
Two approaches to solar structure inversions have been considered: an asymptotic technique, and

a perturbation method based on a variational principle. Both methods are borrowed from geophysics.
The asymptotic technique was originally developed by Brodsky and Levshin [8], and the variational
method was employed by Backus and Gilbert [4] (for reviews of their helioseismic applications see
[30,31]). The most obvious de�ciency of the asymptotic technique is its lack of precision which
is particularly poor in the zones of rapid variations of solar properties, such as the boundaries of
the convection zone, ionization zones and subphotospheric layers [37]. The variational approach is
based on the full oscillation equations, and, therefore, it permits to obtain more information from
the data. Because of nonlinearity these equations can be solved by an iterative procedure like a
generalized Newton–Raphson method.
A variational principle for the adiabatic oscillation eigenfrequencies, and di�erential kernels which

measure sensitivity of frequencies to local perturbations of density � and speci�c heat ratio 
,
are presented in Section 2.1. In Section 2.2, I describe a general method for computation of the
di�erential kernels for other hydrostatic parameters, for example, for u ≡ p=� and helium abundance,
Y , using stellar structure equations and the equation of state. An inversion technique to estimate
localized averages of solar parameters is given in Section 2.3. Some inversion results demonstrating
resolution and accuracy of the inversion technique are presented in Section 2.4.
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The methods and algorithms for inferring the rotation rate inside the Sun are described in
Section 3, including a formulation of the forward problem (Section 3.1), a 2D asymptotic method
based on Abel integral inversion (Section 3.2.1), and numerical methods (Sections 3.2.2 and 3.2.3).
Some inversion results for the current helioseismic data are summarized in Section 3:4.
Solar tomography is reviewed in Section 4. This review includes methods of computing and

interpreting acoustic travel times (Section 4.1), inversion methods (Section 4.2), and initial results
(Section 4.3). In Section 5 some future directions for developing helioseismic inversion techniques
and solar tomography are brie
y discussed.

2. Inversions for the solar structure

2.1. Eigenvalue problem: variational principle for eigenfrequencies

The motions in a star in the simplest case with no heat sources and no heat exchange and extra
forces (such as magnetic and Reynolds stress forces) are described by the hydrodynamic equations
of conservation of mass, momentum, energy and by Poisson’s equation

@�
@t
+ div(�C) = 0; (1)

�
(
@C
@t
+ C ·BC

)
=−Bp− �B�; (2)

@S
@t
+ C ·BS = 0; (3)

B2�= 4�G�: (4)

Here �, C, p, �, T and S are the density, 
uid velocity, pressure, gravitational potential, temper-
ature and speci�c entropy, respectively, and G is the gravitational constant. These equations are
complemented by the equation of state: S = S(p; �), and boundary conditions of regularity at the
star center.
Since the amplitude of solar oscillations is small they can be described in terms of small per-

turbations to a stationary equilibrium state which in the �rst approximation is a function of only
radius r. The perturbation equations are

@�′

@t
+ div(�C′) = 0; (5)

�
@C′
@t
=−Bp′ − �B�′ − �′B�; (6)

@p′

@t
+ C′ ·Bp−

(
@p
@�

)
S

(
@�′

@t
+ C′ ·B�

)
= 0; (7)

B2�′ = 4�G�′; (8)



A.G. Kosovichev / Journal of Computational and Applied Mathematics 109 (1999) 1–39 5

where the variables without subscript denote properties of the equilibrium state, and the prime sign
refers to small perturbations of the properties due to oscillations; (@p=@�)S ≡ c2 is the adiabatic
sound speed, which is also represented in terms of the adiabatic exponent, 
 ≡ (@ logP=@ log �)S :
c2 = 
P=�.
The fourth-order system of equations (5)–(8) is complemented by boundary conditions describing

regularity of the solution at the star center, r=0, and the absence of external forces on the surface
r = R. The oscillatory solution of this system has time dependence exp(i!t), and can be expressed
in terms of Fourier components of the 
uid displacement, �,

C′ = @�=@t = i!�; (9)

where ! in the oscillation frequency. As a result, we obtain an eigenvalue problem for a fourth-order
system of ordinary linear di�erential equations. In this formulation, the eigenvalue problem is
nonlinear in terms of the squared eigenfrequency, !2, and typically solved by iterations for a given
initial equilibrium state.
The inverse problem of helioseismology is to estimate the properties of the equilibrium state from

a set of observed eigenfrequencies. The standard approach to this problem is to �nd corrections to
models of the equilibrium state which are su�ciently close to the real Sun, so that a perturbation
theory can be employed.
Eqs. (5)–(9) together with the boundary conditions can also be represented in a linear operator

form:

L�+ !2�= 0; (10)

where L is a self-adjoint integro-di�erential operator [13]. Therefore, the eigenfunctions � are
orthogonal. Eigenvalues !2 are real and obey a variational principle [10]. For a normal mode, i, the
variational principle gives an integral relation for the eigenfrequency, !i:

!2i =Wi=Ii; (11)

where

Wi =
∫
V
[
p(div �i)

2 + 2(�i ·Bp) div �i + �−1(�i ·B�) (�i ·Bp)] dV

−G
∫
V

∫
V
|ri − r′i |−1 div[��i] div[�′�′i] dV dV ′ (12)

is a quantity proportional to the potential energy of the mode averaged over the period of the
oscillation, and

Ii =
∫
V
��2i dV (13)

can be regarded as mode inertia. Here V is the star volume. Eq. (11) represents the balance between
the potential and kinetic energies averaged over the period of the oscillation modes. In a spherically
symmetric star, the displacement eigenfunctions, �i, can be expressed in terms of spherical harmonics
Ylm(�; �):

�i(r; �; �) = er�i(r)Ylm(�; �) + �i(r)B⊥Ylm(�; �); (14)

where �i(r) and �i(r) represent the radial dependence of the radial and horizontal components of
the displacement vector, B⊥ = e�(@=@�) + e�(1=sin �) (@=@�) is the angular part of the gradient in
spherical coordinates, (r; �; �), and er ; e�; e� are units vectors in the directions of r; �; �.
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Eqs. (12) and (13) can be written in term of �i and �i, and perturbation of the gravitational
potential �′ [3]:

Wi =4�
∫ R

0

p
(
d�i
dr
+
2�i
r

− l(l+ 1)�i
r

)2
r2 dr

+4�
∫ R

0
�r2

[
−4
r
g�2i + �i(g

′
i + 4�G��i) + l(l+ 1)

�i
r
(�′

i + 2g�i)
]
dr; (15)

Ii = 4�
∫ R

0
�r2[�2i + l(l+ 1)�

2
i ] dr; (16)

where

g′ =
@�′

@r
; B2�′ = 4�G�′; g=

Gm
r2

≡ 4�G
r2

∫ r

0
�r′2 dr′;

R is radius of the sun, and m is the mass within a sphere of radius r.
The variational principle asserts that the eigenfrequencies are stationary with respect to variations

in �i, i.e., if a perturbation in an eigenfunction is O(�), then the perturbation in the eigenfrequency
determined from Eq. (11) will be O(�2). Consequently, one can calculate small corrections to the
frequencies due to changes in the physical conditions inside the Sun by linearizing Eq. (11) and
using the unperturbed eigenfunctions.
From the variational principle one can obtain [3,36]:

�!2i
!2i

=
∫ R

0
K (�; 
)i

��
�
dr +

∫ R

0
K (
; �)i

�



dr; (17)

where

K (�; 
)i (r) =
�r2

Ei

{
−!2i [�2i + l(l+ 1)�2i ] + 2�i(g′i + 4�G��i − Fig)

+
2l(l+ 1)

r
�i�′

i − C1; ig+ 4�G(Si − S1; i)
}
; (18)

and

Ei = !2i

∫ R

0
[�2i + l(l+ 1)�

2
i ]�r

2 dr

is proportional to the energy of mode i;

Fi =
1
r
[2�i − l(l+ 1)�i]; C1; i =− 1

r2

∫ r

0

K ′

i r
′2 dr′;

S1; i =
∫ R

r
�C1; i dr′; Si =−2

∫ R

r
��iFi dr′; (19)

K ′
i =

(
d�i
dr
+ Fi

)2
≡ (div �i)2; K (
;�)i (r) =

r2

Ei

pK ′

i :
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If we de�ne

z1 =
(
��
�
;
�




)
; K (1)

i = (K (�; 
)i ; K (
; �)i ); (20)

then Eq. (17) can be written in the form

�!2i
!2i

= 〈K (1)
i · z1〉; (21)

where 〈uv〉= ∫ R0 uv dr.
Eqs. (17) or (21) provide integral constraints on unknown functions ��=� and �
=
 with kernels

K (�; 
)i and K (
; �)i . These kernels determine the sensitivity of the oscillation frequencies to density
variations at constant adiabatic exponent 
 and to variations of 
 at constant � respectively. Integral
equations similar to Eq. (17) can be obtained for some other parameters of solar structure. These
equations are used for inferring the structure parameters from the relative di�erences between the
observed frequencies and frequencies of a reference solar model. For a given reference model
eigenfrequencies !i and kernels K

(
; �)
i and K (�; 
)i can be computed numerically with standard methods.

2.2. Adjoint equations: kernel functions for structure properties

Integral equations (17) or (21) constitute the basis of the helioseismic inverse problem for inferring
corrections to hydrostatic properties of a solar model (density, pressure, adiabatic exponent and their
combinations) from the di�erences between the observed and model frequencies.

2.2.1. Kernel transformation: method of adjoint equations
The hydrostatic structure of the Sun is uniquely determined by the two ‘primary’ properties:

density �(r) and the adiabatic exponent 
(r). Other, ‘secondary’ properties of the solar structure,
such as the squared sound speed c2 = 
p=�, the parameter of convective stability

A∗ =
1


d logp
d log r

− d log �
d log r

;

temperature T or abundances of helium, Y , and heavier elements, Z , can be determined from �
and 
 using the equations of stellar structure. These equations describe the hydrostatic and thermal
equilibria and the thermodynamic state of the solar plasma. Some of the ‘secondary’ properties (e.g.
c2 and A∗) can be determined using only the hydrostatic equations, while others (e.g. T and Y )
require both the hydrostatic and thermodynamic equations. The latter involve some assumptions about
microscopic properties of the solar plasma, which are not completely understood. These uncertainties
may result in systematic errors in the inversion results. On the other hand, helioseismic data may
provide some constraints on the microscopic properties (e.g. [21,23]).
In the helioseismic applications, it is often of interest to obtain direct estimates of these (‘secondary’)

properties from the oscillation frequencies. Such a situation arises, for instance, when the available
frequency information allows the determination of solar properties only in some particular regions
of the solar interior. The integral equations which relates the variations of the ‘secondary’ properties
to the frequency di�erence can be obtained by the method of adjoint functions [40,54].
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The idea of this method is very simple. The relation between the ‘primary’, z1, and ‘secondary’, z2,
properties that follows from the linearized stellar structure equations can be written in the following
symbolic form:

Az1 = z2; (22)

where A is a linear operator. If K (2) is the integral kernel for z2 then according to Eq. (21) the
relative frequency di�erences can be expressed in terms of both z1 and z2:

�!2=!2 = 〈K (1)z1〉= 〈K (2)z2〉: (23)

Then using Eq. (22) and operator A∗ adjoint to A we obtain

〈K (1)z1〉= 〈K (2)z2〉= 〈K2;Az1〉= 〈A∗K (2); z1〉: (24)

Comparing the �rst and last terms of Eq. (24) we obtain the equation for the ‘secondary’ kernels,
K (2):

A∗K (2) = K (1); (25)

which is adjoint to the structure equation (22).
Generally, the relation between the ‘primary’ and ‘secondary’ properties of the solar structure

(Eq. (22)) is obtained from the equations of hydrostatic and thermal balance (see Section 2.2.2)
and constitutes a system of linear di�erential and algebraic equations:

dy
dx
= Ay+ Bz2; (26)

z1 = Cy+ Dz2; (27)

where x = log(r) and y(x) is a vector-function of some properties of the stellar structure di�erent
from z1 and z2 (e.g. gas pressure and fractional mass). Eqs. (26) and (27) are complemented by
the boundary conditions of regularity at the stellar center and surface.
To �nd a kernel function K (2)

i for z2 we introduce a new vector-function w=(w1; w2) and consider
the inner product of w with Eq. (25):〈

w · dy
dx

〉
= 〈w · Ay〉+ 〈w · Bz2〉:

Using integration by parts and assuming that

w · y= 0 at both r = 0 and r = R; (28)

we �nd

−
〈
y · dw
dx

〉
= 〈 y · ATw〉+ 〈w · Bz2〉; (29)

where AT is transposition of matrix A. Since kernels K (1) and K (2) satisfy Eq. (23), from Eq. (27)
we have

〈K (1) · Cy〉+ 〈K (1) · Dz2〉= 〈K (2) · z2〉: (30)

If w is such that

〈K (1) · Cy〉= 〈w · Bz2〉;
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then we obtain

−
〈
y · dw
dx

〉
= 〈 y · ATw〉+ 〈w · Bz2〉= 〈 y · ATw〉+ 〈 y · CTK (1)〉 (31)

and

〈z2 · K (2)〉 − 〈z2 · DTK (1)〉= 〈z2 · BTw〉; (32)

from Eqs. (29) and (30), respectively. Eqs. (31) and (32) will be valid for arbitrary structure
variables z2 and y, if

dw
dx
=−ATw− CTK (1); (33)

K (2) = DTK (1) + BTw: (34)

These two relations together with the boundary conditions (28) determine kernels K (2) for the
‘secondary’ structure variable z2. Therefore, to �nd the kernels K (2), one has to solve the system of
di�erential equations (33) with boundary conditions (28), and then to make use of Eq. (34).

2.2.2. Examples of the kernel transformation
2.2.2.1. Kernels for isothermal sound speed and helium abundance. As an example, we derive

kernels K2 for function z2 = (� ln u; �Y ), where u ≡ p=�, the ratio of the gas pressure to density,
which is approximately proportional to the ratio of the temperature to the molecular weight, and Y
is the abundance of helium. These ‘secondary’ properties are related to the ‘primary’ properties, �
and 
, through the hydrostatic equations:

dp
dr
=−Gm�

r2
;

dm
dr
= 4��r2; (35)

and the equation of state


= 
(p; �; Y ): (36)

The corresponding linearized equations are
d
dx

(
�p
p

)
=−V

(
�m
m

− �p
p
+
��
�

)
; (37)

d
dx

(
�m
m

)
= U

(
−�m
m
+
��
�

)
; (38)

�u
u
=
�p
p

− ��
�
; (39)

�



=
(
@ ln 

@ lnp

)
�;Y

�p
p
+
(
@ ln 

@ ln �

)
p;Y

��
�
+
(
@ ln 

@Y

)
p;�
�Y; (40)

where

x = ln r; V =−d lnp
d ln r

=
Gm�
rp

and U =
d lnm
d ln r

=
4��r3
m

:

Boundary conditions for Eqs. (37) and (38) are the regularity conditions at r =0, and �m=m=0 at
r = R.
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Eqs. (37)–(40) (and similar equations for other ‘secondary’ variables) can be represented in the
matrix form

dy
dx
= A1y+ B1z1 + B2z2; (41)

D1z1 = C1y+ D2z2; (42)

where y = (�p=p; �m=m), z1 = (��=�; �
=
), z2 = (�u=u; �Y ), A1, B1, B2, C1, D1 and D2 are
(2× 2)-matrices:

A1 =
(
V −V
0 −U

)
; B1 =

(−V 0
U 0

)
; B2 =

(
0 0
0 0

)
; (43)

D1 =


 1 0

−
(
@ ln 

@ ln �

)
p;Y

1


 ; C1 =


 1 0(

@ ln 

@ lnp

)
�; Y

0


 ; (44)

D2 =


−1 0

0
(
@ ln 

@Y

)
p;�


 : (45)

Since det(D1) 6= 0 we can reduce Eqs. (41) and (42) to the standard form of Eqs. (26) and (27)
introduced in the previous section:

dy
dx
= Ay+ Bz2; (46)

z1 = Cy+ Dz2; (47)

where

A= A1 + B1D−1
1 C1; B= B1D−1

1 D2 + B2; C = D−1
1 C1; D = D−1

1 D2: (48)

Using these matrices one can determine kernel functions K2 =
(
K (u; Y ); K (Y; u)

)
by solving Eqs. (33)

and (34).

2.2.2.2. Kernels for the parameter of convective stability. The parameter of convective stability

A∗ =
1


d logp
d log r

− d log �
d log r

(49)

plays an important role for the internal structure of the Sun. When this parameter is positive the
solar structure is stable against convection, and when it is negative the structure is unstable. In the
bulk of the convection zone A∗ is negative and close to zero, in the upper convection zone this
parameter experiences a sharp minimum near the surface where highly unstable convective motions
(granulation) are developed.
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Fig. 2. Integral kernels for the acoustic mode with angular degree, l = 10, and radial order, n = 6. K�;
 is the kernel for
density, �, at constant adiabatic exponent, 
; Kc2 ; � is the kernel for the squared sound speed, c

2, at constant �; Ku;Y is the
kernel for function u, – the ratio pressure, p, to density at constant helium abundance, Y ; and KA∗ ;
 is the kernel for the
parameter of convective stability, A∗, at constant 
.

In this case, we add to Eqs. (37) and (38) the linearized equation (49):

d
dx

(
��
�

)
= Vg

(
�p
p

− �m
m

− ��
�
+
�




)
− �A∗; (50)

where Vg=V=
. De�ning y= (�p=p; �m=m; ��=�), z1 = (��=�; �
=
), z2 = (�A∗; �
=
), we obtain Eqs.
(46) and (47) with the following matrices:

A=


 V −V −V
0 −U −U
Vg −Vg −Vg


 ; B=


 0 0

0 0
−1 Vg


 ; C =

(
0 0 1
0 0 0

)
; D =

(
0 0
0 1

)
:

(51)

Then, with these matrices the kernel function K (2) =
(
K (A

∗ ; 
); K (
; A
∗)
)
is determined from Eqs. (33)

and (34) [22].
Similar transformations of integral kernels can be derived for other appropriate pairs of unknown

functions of solar structure [26,27,39,41]. It is important to note that the integral kernels for tem-
perature and element abundances in the solar radiative core, which are important in astrophysical
applications (e.g. the solar neutrino problem), can be determined by including the equations of
thermal equilibrium in addition to the hydrostatic equations [26,27].
Examples of the kernel functions for di�erent pairs of the solar structure variables are shown in

Fig. 2.

2.3. Inversion methods

The variational principle and the method of adjoint functions described in the previous section
allow us to determine linear integral relations between the observed quantities, relative frequency
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di�erences between the Sun and a reference solar model, and the deviations of solar properties from
this model. These relations constitute the linear inverse problem of determining the solar structure.
This problem can be solved by standard regularization methods, such as the method of optimally
localized averages [4] or the regularized least-squares method [77]. However, there are some speci�c
features of this inverse problem such as two unknown functions in the integral constraints, and
additional constraints to account for non-adiabatic e�ects which are not included in the variational
principle. These problems are considered in this section.

2.3.1. Optimally localized averages
From a �nite number of measured frequencies with errors, the unknown functions can be de-

termined from Eq. (17) only with a �nite spatial resolution; in other words, only certain average
values of these functions can be determined.
We adopt a standard Backus–Gilbert inversion method [4,5] to compute the optimally localized

averages of solar parameters. For instance, if f(r) and g(r) are two independent properties of the
solar structure, which are related to the variations of eigenfrequencies via the integral relations

�!2i
!2i

=
∫ R

0
K (f; g)i

�f
f
dr +

∫ R

0
K (g;f)i

�g
g
dr; (52)

where K (f; g)i and K (g;f)i are the corresponding seismic kernels, then the localized averages of the
variations of these properties at r = r0 are determined as linear combinations of the frequency
variations:(

�f
f

)
r0

=
N∑
i=1

a(f; g)i (r0)
�!2i
!2i
; (53)

(
�g
g

)
r0

=
N∑
i=1

a(g;f)i (r0)
�!2i
!2i
; (54)

where a(f; g)i (r0) and a
(g;f)
i (r0) are coe�cients for the optimal averaging kernels localized at r = r0:

A(f; g)(r0; r) =
N∑
i=1

a(f; g)i (r0)K
(f; g)
i (r); (55)

A(g;f)(r0; r) =
N∑
i=1

a(g;f)i (r0)K
(g;f)
i (r): (56)

The coe�cients of these linear combinations are obtained from a �-ness criterion for the averaging
kernels for one of the variables while minimizing the contribution of the other variable. If the �-ness
criterion provides the averaging kernels localized at r = r0 then Eqs. (53) and (54) give estimates
of �f=f and �g=g averaged around r0.
For instance, for estimating �f=f, the �-ness criterion for A(f; g)(r0; r) is complemented by the

minimization of the averaging function of the other variable, �g=g:

B(f; g)(r0; r) =
N∑
i=1

a(f; g)i (r0)K
(g;f)
i (r):
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In this case, coe�cients a(f; g)i are determined by minimizing the following quadratic function:

M (r0; A; �; �) =
∫ R

0
J (r0; r)[A(f; g)(r0; r)]

2 dr + �
∫ R

0
[B(f; g)(r0; r)]

2 dr + �
∑
i; j

Eija
(f; g)
i a(f; g)j ; (57)

where J (r0; r) = 12(r − r0)2, Eij is a covariance matrix of observational errors, and � and � are the
regularization parameters. The �rst integral in Eq. (57) represents the Backus–Gilbert criterion of
�-ness for A(f; g)(r0; r); the second term minimizes the contribution from B(f; g)(r0; r), thus, e�ectively
eliminating the second unknown function, �g=g; and the last term minimizes the errors.
The numerical procedure to compute a(f; g)i (r0) for given � and � is to substitute Eqs. (55) and

(56) into Eq. (57), and, then, minimize M as a positively de�ned quadratic function of a(f; g)i subject
to the normalization constraint:∫ R

0
A(f; g)(r0; r) dr ≡

N∑
i=1

a(f; g)i (r0)
∫ R

0
K (f; g)(r0; r) dr = 1: (58)

If we de�ne

vi =
∫ R

0
K (f; g)i (r) dr; S (f; g)p; ij = 12

∫ R

0
rpK (f; g)i (r)K (f; g)j (r) dr; (59)

S (f; g)ij = r20S
(f; g)
0; ij − 2r0S (f; g)1; ij + S (f; g)2; ij ; S (g;f)ij = 12

∫ R

0
K (g;f)i (r)K (g;f)j (r) dr

and

Wij = S
(f; g)
ij + �S (g;f)ij + �Eij;

where i; j = 1; : : : ; N , then coe�cients a(f; g)i (r0) satisfy

Wa + �C= 0 (60)

and

C · a = 1; (61)

where a = (a(f; g)1 ; : : : ; a(f; g)N ), C = (v1; : : : ; vN ), and � is a Lagrange multiplier. From Eqs. (60) and
(61) we obtain

a =
y

(y ·Wy) ; (62)

where

y=W−1C: (63)

Then, the localized averages of �f=f are estimated from(
�f
f

)
r0

=
N∑
i=1

a(f; g)i (r0)
�!2i
!2i

=
∫ R

0
A(f; g)(r0; r)

�f
f
dr +

(
�g
g

)
; (64)

where (
�g
g

)
=
∫ R

0
B(f; g)(r0; r)

�g
g
dr (65)
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is the contribution of the second, ‘eliminated’, variable. This contribution causes errors in the es-
timated localized averages of the �rst function, and, therefore, has to be made su�ciently small,
e.g. (

�g
g

)
max

6�; (66)

where �=
(∑

i; j a
(f; g)
i a(f; g)j Eij

)1=2
is an estimate of random errors in the inversion results. If we assume

that |�g=g |¡C, then, from Eqs. (65) and (66) we obtain the following criterion for choosing the
regularization parameter �:∫ R

0
B(f; g)(r0; r) dr6C−1�: (67)

The regularization parameter � is determined as a trade-o� between the spatial resolution and error
magni�cation [5]. The resolution of inversions is characterized by the spread of the averaging kernels

s0 =
∑
i; j

a(f; g)i a(f; g)j S (f; g)ij (68)

and their width

w =
∑
i; j

a(f; g)i a(f; g)j S (f; g)2; ij − [
∑

i; j a
(f; g)
i a(f; g)j S (f; g)1; ij ]

2∑
i; j a

(f; g)
i a(f; g)j S (f; g)0; ij

: (69)

The central location of the averaging kernels can be estimated from

c(r0) =

∑
i; j a

(f; g)
i (r0)a

(f; g)
j (r0)S

(f; g)
1; ij∑

i; j a
(f; g)
i (r0)a

(f; g)
j (r0)S

(f; g)
0; ij

: (70)

2.3.2. Nonadiabatic e�ects
Nonadiabatic e�ects near the solar surface cause systematic frequency shifts which may a�ect the

inversion results. If the observed frequencies are

!obs; i = !ad; i + �!nonad; i ;

then the localized averages of �f=f are(
�f
f

)
obs

=

(
�f
f

)
ad

+
N∑
i=1

a(f; g)i

�!2nonad; i
!2i

; (71)

where !i ≡ !ad; i.
Therefore, the nonadiabatic e�ects cause systematic errors in the localized averages estimated by

using the adiabatic variational principle. In the Sun, most non-adiabatic e�ects occur near the solar
surface. In this case, as suggested in [14,20], the nonadiabatic frequency shift can be approximated
by a smooth function of frequency, F(!) scaled with the factor, Q ≡ I(!)=I0(!), where I(!) is
the mode inertia (Eq. (16)), and I0(!) is the mode inertia of radial modes (l = 0), calculated at
frequency !, that is

�!2nonad; i
!2i

= F(!i)=Q(!i): (72)
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If the function F(!) can be approximated by a polynomial function of degree K :

F(!i) =
K∑
k=0

ck!ki ; (73)

then the in
uence of the nonadiabatic e�ects can be reduced by applying K+1 additional constraints
for ai:

N∑
i=1

ai!ki Q(!i) = 0; k = 0; : : : ; K: (74)

These constraints are considered together with the Eq. (58) in the minimization procedure of the
quadratic function (57). If we represent constraints (58) and (74) in the matrix form

Ba = c; (75)

then the minimization procedure leads to the equation

Wa + �B= 0; (76)

where � = (�1; : : : ; �K+2) are Lagrange multipliers. Finally, from Eqs. (75) and (76) we obtain the
coe�cients of the optimally localized averages:

a =
(
W−1BT

) (
BW−1BT

)−1
c; (77)

where BT is a matrix transposed to B.
The function F(!) can be also represented in terms of Legendre polynomials [20]

F(!) =
∑
k

ckPk

(
2!− !max − !min
!max − !min

)
; (78)

where !min and !max are the boundaries of the observed frequency range.

2.3.3. Regularized least-squares techniques
The regularized least-squares (RLS) method [77] is based on minimization of the quantity

E≡
∑
i

1
�2i

[
�!2i
!2i

−
∫ R

0

(
K (f; g)i

�f
f
+ K (g;f)i

�g
g

)
dr − F(!i)

Q

]2

+
∫ R

0

[
�1

(
L1
�f
f

)2
+ �2

(
L2
�g
g

)2]
dr; (79)

in which the unknown structure correction functions, �f=f and �g=g, are both represented by
piece-wise linear functions or by cubic splines, and the coe�cients in these expansions are de-
termined together with coe�cients ck in the presentation of F (Eqs. (73) or (78)). The second
integral speci�es smoothness constraints for the unknown functions, in which L1 and L2 are linear
di�erential operators, e.g. L1; 2 = d2=d2r; �i are error estimates of the relative frequency di�erences.
In this inversion method, the estimates of the structure corrections are, once again, linear combi-

nations of the frequency di�erences obtained from observations, and corresponding averaging kernels
exist too [75]. However, unlike the OLA kernels A(r0; r), the RLS averaging kernels may have neg-
ative side-lobes and signi�cant peaks near the surface, thus making interpretation of the inversion
results to some extent ambiguous. This technique has been used in [2,20,44].
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If the variations of the structure properties are represented in a parametric form then the unknown
parameters can be evaluated from the helioseismic equations (52) by using a least-squares technique.
Kosovichev [41] has applied this parametric inversion technique for determining the depth of the
convection zone and the helium abundance. Finally, ‘super-resolution’ techniques can be developed
by applying, for instance, nonlinear constraints in order to study some particular features of the
interior structure, like overshooting and other sharp variations of the interior properties [43]. In
addition to the inversions, model calibrations are used to estimate the parameters of the solar structure
(e.g. [7,11,57]).

2.4. Results

As an example, I present the results of inversion of the recent data obtained from the SOI-MDI
instrument on board the SOHO space observatory. The data represent 2176 frequencies of solar
oscillations of the angular degree, l, from 0 to 250. These frequencies were obtained by �tting
peaks in the oscillation power spectra from a 360-day observing run, between May 1, 1996 and
April 25, 1997.
Two di�erent methods have been used to estimate the frequencies of the solar normal modes from

the oscillation power spectra [63]. In the �rst, so-called ‘mean-multiplet’ method [67], the power
spectral peaks are assumed to have a symmetric Lorentzian shape, and a maximum likelihood method
is employed to determine the parameters of Lorentzian pro�les. The peaks are �t simultaneously in
all of the 2l+ 1 individual power spectra for each rotationally split multiplet so that the e�ects of
overlapping peaks can be included in the �ts. These 2l+ 1 frequencies are e�ectively averaged to
yield a single mean frequency, !nl, for that multiplet. The second frequency estimation technique
employs the m-averaged power spectra rather than the 2l+ 1 individual power spectra.
The reference solar model chosen for this inversion is described in [12]. This model used the

OPAL equation of state and opacities [64,65]. Nuclear reaction parameters were obtained from [6].
Helium and heavy-element settling was included, using the Michaud and Pro�tt coe�cients [62].
The present value of the ratio of the heavy element abundance to the hydrogen abundance on the
solar surface is 0.0245, while the age of the present Sun was assumed to be 4.6 Gyr.
Fig. 3 shows the frequency di�erence scaled with the factor Q (cf. Eq. (72)) which varies between

0.28 and 1. This di�erence depends mainly on frequency alone meaning that most of the di�erence

Fig. 3. The scaled relative frequency di�erence between the Sun and the standard solar model.
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Fig. 4. A sample of the optimally localized averaging kernels for the structure function, u, the ratio of pressure, p, to
density, �.

Fig. 5. The results of test inversions (points with the error bars, connected with dashed curves) of frequency di�erencies
between two solar models for the squared sound speed, c2, the adiabatic exponent, 
, the density, �, and the parameter of
convective stability, A∗. The solid curves show the actual di�erences between the two models. Random Gaussian noise
was added to the frequencies of a test solar model. The vertical bars show the formal error estimates, the horizontal bars
show the characteristic width of the localized averaging kernels. The central points of the averages are plotted at the
centers of gravity of the averaging kernels.

between the Sun and the reference solar model is in the near-surface layers. However, there is also a
signi�cant scatter along the general frequency trend. This scatter is due to the variations of the struc-
ture in the deep interior, and it is the basic task of the inversion methods to uncover the variations.
The inversion method applied to these data was the optimally localized averaging described in

Section 2.3.1. A sample of the localized averaging kernels is shown in Fig. 4. Fig. 5 shows the
results of test inversions, in which frequencies of a solar model were used instead of the observed
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Fig. 6. The relative di�erences between the Sun and the standard solar model in the squared sound speed, c2, the adiabatic
exponent, 
, the density, �, and the parameter of convective stability, A∗, inferred from the solar frequencies determined
from the 360-day series of SOHO MDI data.

frequencies. This test model was computed with the equation of state [55] instead of the OPAL
equation of state employed in the reference model; the other input physics was the same. The
theoretical frequencies of this model were perturbed with the Gaussian noise corresponding to the
observational errors. The results of this inversion (Fig. 5) show good agreement between the in-
version results and the actual di�erences. However, the sharp variations, like a peak in �A∗ at the
base of the convection zone, are smoothed. Also, the inner 5% of the Sun and the subsurface layers
(outer 2–3%) are not resolved.
The inversion results for the 360-day SOI-MDI data are shown in Fig. 6. These results show

that the di�erences between the inferred structure and the reference solar model are quite small,
generally less than 1%. The small di�erences provide a justi�cation for the linearization procedure
of Section 2, based on the variational principle. This also means that the modern standard model
of the Sun provides an accurate description of the solar properties. However, the inversions reveal
signi�cant deviations from the standard model, which lead to better understanding of the structure
and evolution of the star, and have important applications in other �elds of astrophysics [29,48].
For instance, the prominent peak of the squared sound speed, �c2=c2, at the base of the convection
zone, r=R ≈ 0:7, indicates on additional mixing which may be caused by rotational shear 
ows or
by convective overshoot. The variation in the sound speed in the energy-generating core, r=R¡ 0:2,
also provides evidence for a partial mixing [27].
The monotonic decrease of the adiabatic exponent, 
, in the core was recently explained by the

relativistic corrections to the equation of state [23]. Near-surface variations of 
, in the zones of
ionization of helium and hydrogen, and below these zones, are most likely caused by de�ciencies
in the theoretical models of the weakly coupled plasma in both OPAL and MHD equations of state.
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The monotonic decrease of the squared sound speed variation in the convection zone (r=R¿ 0:7) is
partly due to an error in the solar radius used to calibrate the standard model [71].

3. Inversions for solar rotation

3.1. Theory of rotational frequency splitting

The eigenfrequencies of a spherically symmetrical static star are degenerate with respect to the
azimuthal number m. Rotation breaks the symmetry and splits each mode of radial order, n, and
angular degree, l, into (2l+1) components of m=−l; : : : ; l (‘mode multiplets’). The rotational fre-
quency splitting can be computed using a more general variational principle derived by Linden-Bell
and Ostriker [53]. From this variational principle, one can obtain mode frequencies !nlm relative to
the degenerate frequency !nl of the nonrotating star:

�!nlm ≡ !nlm − !nl = 1
Inl

∫
V
[m� · �∗ + ie
(�× �∗)]
� dV; (80)

where e
 is the unit vector de�ning the rotation axis, and 
=
(r; �) is the angular velocity which
is a function of radius r and co-latitude �, and Inl is the mode inertia (Eq. (16)).
Using Eq. (14) for the eigenfunctions, �, Eq. (80) can be rewritten as a two-dimensional integral

equation for 
(r; �):

�!nlm =
∫ R

0

∫ �

0
K (
)nlm(r; �)
(r; �) d� dr (81)

where K (
)nlm(r; �), the rotational splitting kernels:

K (
)nlm(r; �) =
m
Inl
4��r2

{
(�2nl − 2�nl�nl)(Pml )2 + �2nl

[(
dPml
d�

)2

− 2Pml
dPml
d�

cos �
sin �

+
m2

sin2�
(Pml )

2

]}
sin #: (82)

Here �nl and �nl are the radial components of eigenfunctions (14) of the mean spherically symmetric
structure of the Sun, Pml (�) is an associated normalized Legendre function (

∫ �
0 (P

m
l )
2sin � d� = 1).

The kernels are symmetric relative to the equator, � = �=2. Therefore, the frequency splittings are
sensitive only to the symmetric component of rotation in the �rst approximation. The non-symmetric
component can, in principle, be determined from the second-order correction to the frequency split-
ting [28], or from local helioseismic techniques, such as time-distance seismology and ring-diagram
analysis [24,69].
For a given set of observed frequency splittings, �!nlm, Eq. (81) constitutes a two-dimensional

linear inverse problem for the angular velocity, 
(r; �). Details of the method for estimating the
frequency splittings were given in [67]; see also [33] for another discussion of the data analysis
issues. In order to increase the stability of the estimates, the 2l+ 1 frequencies !nlm of individual
modes within a given (n; l) multiplet can be parameterized in terms of a set of orthogonal polynomials
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P(l)
j (m) of degree j:

!nlm = !nl + 2�
jmax∑
j=1

aj(n; l)P
(l)
j (m) (83)

with generally fewer than 2l+1 parameters aj. The polynomials P
(l)
j (m) used in this expansion are

de�ned by

P(l)
j (l) = l and

l∑
m=−l

P(l)
i (m)P

(l)
j (m) = 0 for i 6= j: (84)

The polynomials are related to Clebsch–Gordan coe�cients Clmlmj0 by (e.g. [48])

P(l)
j (m) =

l
√
(2l− j)!(2l+ j + 1)!
(2l)!

√
2l+ 1

Clmlmj0: (85)

From the symmetry properties of the splittings it follows that rotation contributes only to the aj
for odd j. The even aj coe�cients are related to the large-scale asphericity of the Sun, and their
analysis is generally similar (e.g. [25]).
The expansion of the splittings in polynomials in m, as in Eq. (83), corresponds to an expansion

of 
 as


(r; �) =
smax∑
s=0


s(r)
dP2s+1
dz

; (86)

where Pk(z) is a Legendre polynomial of z = cos � (e.g. [9,38]). The a coe�cients and expansion
functions for 
 are related by

2�a2j+1(n; l) =
∫ R

0
K (a)nlj (r)
j(r) dr; (87)

for suitable kernels K (a)nlj [59]. Thus, the original 2-D inverse problem can be decomposed into a
series of independent 1-D inversions in r; this forms the basis for the so-called 1.5-D inversion
methods.

3.2. Inversion methods

Inversion methods for inferring the 2-D rotation rate are substantially less developed and less
robust than the methods of 1-D structure inversions discussed in Section 2, because the rotation
inversion involves large data sets with 105–106 data points, and because these data are much less
accurate than the mean multiplet frequencies used in the structure inversions. In this section, we
discuss an asymptotic method which e�ectively averages the data according to the distribution of
the lower turning points of acoustic modes. Also, modi�cations to the optimally localized averaging
method which in its original formulation (Section 2) becomes impractical for the large data sets,
are also discussed.

3.2.1. Asymptotic method
If the internal structure and rotation of the Sun vary smoothly, so that the parameter, �=(krr0)−1,

representing the ratio of the wavelength, � ' k−1r to the characteristic scale, r0, of the solar properties
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is small, one can apply an asymptotic (JWKB) approximation to Eqs. (5)–(8) or (10). This approx-
imation is useful for inferring the internal structure and rotation because it substantially simpli�es
the inverse problem, provides a simple physical interpretation of the data and inversion results, and
is su�ciently accurate in many cases. For the solar acoustic (p) modes, the wave number, kr, is
related to the oscillation frequency by the dispersion relation (e.g. [78])

k2r =
1
!2c2

(!2 − L2l )(!2 − N 2); (88)

where c is the sound speed, L2l ≡ l(l + 1)c2=r2 is the Lamb frequency, N 2 = gA∗=r is the Brunt–
V�ais�al�a frequency, and A∗ is the parameter of convective stability (49). The squared wave number
k2r is positive in the region of wave propagation, and vanishes at the turning points, r1 and r2,
speci�ed by the conditions !2 = L2l and !

2 = N 2, respectively, which are points of total internal
re
ection of acoustic waves. These points de�ne the lower (r1) and upper (r2) boundaries of the
acoustic cavity. Since !2�N 2 for the solar acoustic oscillations everywhere except very close to
the surface we can neglect the last term of Eq. (88) and assume that r2 ≈ R, where R is the solar
radius.
We may seek a solution to the oscillation equations (10) in the form �˙ exp(iS(r)), where S(r)

is written as a series in powers of �. Retaining only the �rst-order term, one �nds the following
asymptotic solution to the radial eigenfunctions:

�nl ' [!2 − l(l+ 1)c2=r2]1=2
!�1=2cr

1

k1=2r
sin
(∫ r2

r
kr dr′ − �

4

)
; (89)

�nl ' [!2 − N 2]1=2

!2�1=2r2
1

k1=2r
cos
(∫ r2

r
kr dr′ − �

4

)
: (90)

These equations are valid in the wave propagation regions, far from the turning points.
In a similar way, we can derive an asymptotic approximation for the associate Legendre functions

Pml (z) where z= cos �. For oscillations with l�1, the functions Pml (z) may be expanded in powers
of 1=l (e.g. [56]):

Pml (z) =
(

2l+ 1
�kz(1− z2)

)1=2
cos
(∫ z

z1
kz dz′ − �

4

)
; (91)

where

kz =
1

(1− z2)1=2
[(
l+

1
2

)2
− m2

1− z2
]1=2

;

z1;2 =∓
[
1− m2

(l+ 1=2)2

]1=2
; z1¡z¡z2;

(92)

and z1 and z2, are turning points with respect to the angular coordinate.
Substituting the asymptotic eigenfunctions (Eqs. (89)–(91)) into Eqs. (81)–(82) and intergrating

over rapidly varying trigonometric functions we arrive at an integral equation for the angular velocity

 [47]:

�!nlm =
m
�Inl

∫ yS

x

∫ √
�

−√
�

(y; z)y

d ln r
dy

(y − x)−1=2(�− z2)−1=2 dz dy; (93)
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where the asymptotic mode inertia is given by

Inl =
∫ yS

x
(y − x)−1=2yd ln r

dy
dy; (94)

x = (l + 1=2)2=!2, y = r2=c2, � = 1 − m2=(l + 1=2)2, and yS is the value of y at the solar surface,
r = R.
Eq. (93) can be rewritten in the form of the two-dimensional Abel integral equation∫ yS

x

∫ �

0

�(y; t) dt dy
(y − x)1=2(�− t)1=2 = G(x; �); (95)

where

�(y; t) = 
(y; t)yt−1=2
d ln r
dy

; G(x; �) = ��!nlm
m

Inl: (96)

This equation can be solved in several ways. One approach is to apply Abel inversion to each of
the inner integrals, as a result we obtain [47]

�(x; �) =
1
�2

@2

@x@�

∫ �

0

∫ yS

x

G(�; �) d� d�
(�− �)1=2(� − x)1=2 : (97)

Thus, in the case l� 1, where the asymptotic representation is valid, the inverse for the solar internal
rotation can be solved by quadratures. The observed frequency splittings, �!nlm=m, are approximated
by a two-dimensional function of the asymptotic variables (l+1=2)=! and (l+1=2)=m. One should
keep, in mind, however, that due to observational error regularization algorithms are required to
keep the Abel inversion stable.

3.2.2. Optimally localized averaging methods
Similar to the 1-D case (Section 2.3.1) these methods explicitly form linear combinations of the

data and corresponding kernels such that the resulting averaging kernels are, to the extent possible,
localized near the target positions, r0; �0, through appropriate choice of the coe�cients a

(
)
i (r0; �0)

(see [4]):

�
(r0; �0) =
M∑
i=1

a(
)i (r0; �0)di =
∫ R

0

∫ �

0
K(r0; �0; r; �)
(r; �) d� dr; (98)

where di is the observed property, frequency splitting �!nlm, or splitting coe�cients aj(n; l) (83),
K(r0; �0; r; �) is the averaging kernel given by

K(r0; �0; r; �) =
M∑
i=1

a(
)i (r0; �0)K
(
)
i (r; �); (99)

and M is the total number of data points. However, the application of the Backus–Gilbert [4] �-ness
criterion leads to M ×M linear equations at each of the target positions. A modi�cation suggested
in [51,52,60] allows to keep the same matrix for all target points, and, thus, is computationally more
e�cient. In this formulation, sometimes called ‘subtractive optimally localized averaging’ (2dSOLA),
the goal is to approximate K to a prescribed target T(r0; �0; r; �), by minimizing∫ R

0

∫ �

0
[T(r0; �0; r; �)−K(r0; �0; r; �)]

2 d� dr + �
M∑
i=1

[�ia
(
)
i (r0; �0)]

2 (100)
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subject to K being unimodular. Here the �rst term ensures that the averaging kernel is close to the
target form, while the second controls the error in the inferred solution, the trade-o� between the
two being controlled by the parameter �.
The results of this method depend on the choice of the target function, T(r0; �0; r; �), and, cur-

rently, there is no general recipe for choosing this function. One of the approaches is to em-
ploy Gaussian targets symmetrized around the equator, with the radial width chosen proportional
to the local sound speed (e.g. [76]) and constant width in latitude. However, the Gaussian tar-
get kernels may lead to substantial side-lobes in the averaging kernels and confusing results near
the boundaries because the seismic kernels vanish at the boundaries [50]. Larsen et al. [50] sug-
gested modifying the target functions according to the behavior of the seismic kernels near the
boundaries.
A simple implementation of the above method would require the factorization of one or more

M ×M matrices, and hence would be prohibitively expensive computationally for two-dimensional
inversion, because M may be so large, 105–106. E�cient algorithms have been developed by ex-
ploiting the special structure of the integral kernels K (
)nlm(r; �). Eq. (82) can be rewritten in the
form

K (
)nlm(r; �) = Fnl(r)Glm(�) + Hnl(r)Jlm(�); (101)

where Fnl(r) = 4��r2(�2nl − 2�nl�nl)=Inl, Hnl(r) = 4��r2�2nl=Inl, Glm(�) = m sin �(Pml )2, and

Jlm(�) = m sin �

[(
dPml
d�

)2
− 2Pml

dPml
d�

cos �
sin �

+
m2

sin2�
(Pml )

2

]
:

For the SOI-MDI data, for instance, l ∈ [1; 250]; n ∈ [0; 25], and m ∈ [ − l; l], and, thus, M ≈
1:5 · 106. However, the index n appears only in the radial functions, F and G, and does not appear
in the angular functions, G and J . Moreover, the second term is usually much smaller than the
�rst term in Eq. (101). These properties can be used for developing e�cient numerical algorithms.
Larsen [49] has noticed that when the kernels, K (
)nlm(r; �), are discretized this special functional form
gives rise to a kernel matrix with block Kroneker product structure which can be used in a fast
matrix-vector multiplication algorithm, and applied an iterative Lanczos-type algorithm to the inverse
problem. This has made it possible to use the full 2dSOLA method even for the large SOI-MDI data
sets.
Other ways of making localized averages more tractable for the two-dimensional problem include

the R1⊗R1 methods, originally proposed in [72,73], which use the separation of the kernels Knlm as
in Eq. (101). The 1d×1dOLA method [72,74] is similar to the two-dimensional optimally localized
averaging method, in that the solution is based on explicit determination of appropriate inversion
coe�cients a(
)i (r0; �0). However, these are not sought in the full space. Instead, motivated by the
near-factorization of the splitting kernels, it is assumed that

a(
)i = c̃nl�lm; (102)

where the inversion coe�cients {�lm} are determined in such a way that the �rst term of the angular
part of the averaging kernel is localized (the SOLA method has been used for this purpose). Then
the (radial) inversion coe�cients {c̃nl} are determined by optimizing a localization criterion in two
dimensions including the second term in Eq. (101) [74]. A more general version of this approach
was developed in [61].
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As in all SOLA-type methods, the free parameters are resolution widths in radius and in latitude
for the Gaussian target functions usually used, and error-weighting factors.

3.2.3. Regularized least-squares method
The regularized least-squares method was applied to the 2D inverse problem in [70]. The goal of

this method is to obtain a smooth solution that �ts the data rather than to construct well-localized
averaging kernels. This solution is obtained by minimizing the following functional:

M∑
i=1

1
�2i

[∫ R

0

∫ �

0
Ki
(r; �) d� dr − di

]2
+ �r

∫ R

0

∫ �

0
fr(r; �)

(
@2

@r2

)2
d� dr

+ ��
∫ R

0

∫ �

0
f�(r; �)

(
@2

@� 2

)2
d� dr; (103)

where di are the observed frequency splittings or splitting coe�cients, Ki are the corresponding
seismic kernels, �i are the error estimates of the data, and �r and �� are the regularization parameters,
and fr and f� are some weight functions which can be used to regulate the degree of smoothing
in di�erent regions. The last two terms provide smoothing using the second-derivative constraints,
which provided good results for arti�cial and real data [68,70].

3.3. Results

As an example, we present some recent results obtained from SOI-MDI data [68]. These data
consist of splitting coe�cients aj(n; l) (Eq. (83)) obtained from the 144-day MDI time series by
J. Schou using method [67] for j = 1; : : : ; 36 and 16l6250. The presentation of the data in terms
of the splitting coe�cients rather than frequency splitting of the individual modes improves the
stability of the measurements and reduces the number of data points. However, this also reduces
the angular resolution of the results of inversion. The total number of measurements in this data
set was M = 37366. Fig. 7 shows a set of the averaging kernels for the three di�erent inversion
methods described in this section. As expected, the optimally localized averaging methods provide
better localization than the regularized least-squares method.
Fig. 8 shows the results of inversion of an arti�cial data set. We note that the results by the

RLS method are somewhat closer to the actual rotation rate in the polar region (near the vertical
axis) than the results by the SOLA method. The SOLA result has been recently improved in [50]
by modifying the target kernel function, T(r0; �0; r; �), as discussed in Section 3.2.2.
Fig. 9 shows the results of inversion of the SOI-MDI data by the two methods. The results

are generally in good agreement in most of the area where good averaging kernels were obtained.
However, the results di�er in the high-latitude region. In particular, a prominent feature at (0.2,
0.95) in Fig. 9a, which can be interpreted as a ‘polar jet’ is barely visible in Fig. 9b. Therefore,
obtaining reliable inversion results in this region and also in the shaded area is one of the main
current goals of helioseismology. This can be achieved by obtaining more accurate measurements
of rotational frequency splitting and improving inversion techniques.
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Fig. 7. Contour plots showing in a cross-section of the Sun a sample of the localized averaging kernels of 2D rotation
inversions by the regularized least-squares (RLS) method and by two versions of the subtractive optimal localized averaging
(SOLA) methods. The coordinates of the target points are shown along the left vertical axis, and indicated by crosses.
The vertical axis is the polar axis, and the horizontal axis is an axis in the equatorial plane. The quarter of the circle
indicates the solar surface at r=R. The standard error, �, (in nHz) at each target point has been indicated (adopted from
[68]).

4. Solar tomography

The basic idea of helioseismic tomography is to measure the acoustic travel time between di�erent
points on the solar surface, and then to use these measurement for inferring variations of the
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Fig. 8. Results of the test inversion by the RLS and SOLA methods. The dashed contour curves show the actual rotation
(in nHz). The solid curves show the results of inversion of the test data perturbed with random Gaussian noise (adopted
from [68]). The polar and equatorial axes are labeled with the relative radius.

Fig. 9. Contour lines of the rotation rate (in nHz) inside the Sun obtained by inverting the rotational frequency splittings
from a 144-day observing run from SOHO MDI by the RLS and SOLA methods. The shaded areas are the areas where
the localized averaging kernels substantially deviate from the target positions (adopted from [68]).

structure and 
ow velocities in the interior along the wave paths connecting the surface points.
This idea is similar to the Earth’s seismology. However, unlike in Earth, the solar waves are
generated stochastically by numerous acoustic sources in the subsurface layer of turbulent convection.
Therefore, the wave travel times are determined from the cross-covariance function, 	(�; �), of the
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Fig. 10. The observed cross-covariance function as a function of distance on the solar surface, �, and the delay time, �.

oscillation signal, f(t; r), between di�erent points on the solar surface [17]:

	(�; �) =
∫ T

0
f(t; r1)f∗(t + �; r2) dt; (104)

where � is the angular distance between the points with coordinates r1 and r2; � is the delay
time, and T is the total time of the observations. Because of the stochastic nature of excitation of
the oscillations, function 	 must be averaged over some areas on the solar surface to achieve a
signal-to-noise ratio su�cient for measuring travel times �. The oscillation signal, f(t; r), is usually
the Doppler velocity or intensity. A typical cross-covariance function shown in Fig. 10 displays three
sets of ridges which correspond to the �rst, second and third bounces of acoustic wave packets from
the surface [18].
The cross-covariance function represents a solar ‘seismogram’. Ideally, the seismogram should be

inverted to infer the structure and 
ows using a wave theory. However, in practice, as in terrestrial
seismology [1] di�erent approximations are employed, the most simple and powerful of which is
the geometrical acoustic (ray) approximation. In the next section, we discuss relations between the
modal wave approach and the ray theory [45].

4.1. Wave travel times and ray approximation

Generally, the observed solar oscillation signal corresponds to radial displacement or pressure
perturbation, and can be represented in terms of normal modes, or standing waves (Section 2.1):

f(t; r; �; �) =
∑
nlm

anlm�nlm(r; �; �)exp(i!nlmt + i�nlm); (105)

where n; l and m are the radial order, angular degree and angular order of a normal mode, re-
spectively, �nlm(r; �; �) is a mode eigenfunction in spherical coordinates, r; � and �;!nlm is the



28 A.G. Kosovichev / Journal of Computational and Applied Mathematics 109 (1999) 1–39

Fig. 11. The theoretical cross-covariance function of the solar p-modes of l = 0–1000 as a function of distance on the
solar surface, �, and time, �. The solid curve is the time–distance relation computed in the ray approximation (Eq. (107)).

eigenfrequency, and �nlm is an initial phase of the mode. Using Eq. (104), the cross-covariance
function can be expressed in terms of normal modes, and then represented as a superposition of
traveling wave packets. An example of the theoretical cross-covariance function of p modes of the
standard solar model is shown in Fig. 11.
By grouping the modes in narrow ranges of the angular phase velocity, v = !nl=L, where L =√
l(l+ 1), and applying the method of stationary phase, the cross-covariance function can be ap-

proximately represented in the form [45]

	(�; �)˙
∑
�v

cos
[
!0

(
�− �

v

)]
exp

[
−�!
4

(
�− �

u

)2]
; (106)

where �v is a narrow interval of the phase speed, u ≡ (@!=@kh) is the horizontal component of
the group velocity, kh = 1=L is the angular component of the wave vector, and !0 is the central
frequency of a Gaussian frequency �lter applied to the data, and �! is the characteristic width of
this �lter. Therefore, the phase and group travel times are measured by �tting individual terms of
Eq. (106) to the observed cross-covariance function using a least-squares technique. In some cases,
the ridges of the cross-covariance function may partially overlap, thus making the interpretation of
the time–distance results more di�cult [15].
This technique measures both phase (�=v) and group (�=u) travel times of the p-mode wave pack-

ets. The previous time–distance measurements provided either the group time [34], or an unspeci�ed
combination of the group and phase times [16]. It was found that the noise level in the phase-time
measurements is substantially lower than in the group-time measurements. The geometrical acoustic
(ray) approximation was employed to relate the measured phase times to the internal properties of
the Sun. More precisely, the variations of the local travel times at di�erent points on the surface,
relative to the travel times averaged over the observed area are measured. Then variations of the
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internal structure and 
ow velocities are inferred from the travel time anomalies using a perturbation
theory.
In the ray approximation, the travel times are sensitive only to the perturbations along the ray

paths given by

dr
dt
=
@!
@k
;
dk
dt
=
@!
@r
; (107)

where r is the radius-vector and k is the wave vector. The variations of the travel time obey Fermat’s
Principle (e.g. [25]):

��=
1
!

∫
�
�k · dr; (108)

where �k is the perturbation of the wave vector due to the structural inhomogeneities and 
ows
along the unperturbed ray path, �.
The dispersion relation for magnetoacoustic waves in the convection zone is

(!− k ·U)2 = !2c + k2c2f ; (109)

where U is the 
ow velocity, !c is the acoustic cut-o� frequency,

c2f =
1
2(c

2 + c2A +
√
(c2 + c2A)2 − 4c2(k · cA)2=k2)

is the fast magnetoacoustic speed, cA = B=
√
4�� is the vector Alfv�en velocity, B is the magnetic

�eld strength, c is the adiabatic sound speed, and � is the plasma density. If we assume that, in the
unperturbed state U = B = 0, then, to the �rst-order approximation

��=−
∫
�

[
(n ·U)
c2

+
�c
c
S +

(
�!c
!c

)
!2c
!2c2S

+
1
2

(
c2A
c2

− (k · cA)2
k2c2

)
S

]
ds; (110)

where n is a unit vector tangent to the ray, S = k=! is the phase slowness. Then, we separate the
e�ects of 
ows and structural perturbations by taking the di�erence and the mean of the reciprocal
travel times:

��di� =−2
∫
�

(n ·U)
c2

ds; (111)

��mean =−
∫
�

[
�c
c
S +

(
�!c
!c

)
!2c
!2c2S

+
1
2

(
c2A
c2

− (k · cA)2
k2c2

)
S

]
ds: (112)

Anisotropy of the last term of Eq. (112) allows us to separate, at least partly, the magnetic ef-
fects from the variations of the sound speed and the acoustic cut-o� frequency. The acoustic cut-o�
frequency, !c may be perturbed by the surface magnetic �elds and by the temperature and den-
sity inhomogeneities. The e�ect of the cut-o� frequency variation depends strongly on the wave
frequency, and, therefore, it should result in frequency dependence in �mean. However, a signi�cant
frequency dependence in the observed travel times has not been detected yet.
Typically, the measurements represent times for acoustic waves to travel between points on the

solar surface and surrounding quadrants symmetrical relative to the North, South, East and West
directions. In each quadrant, the travel times are averaged over narrow ranges of travel distance �.
Then, the times for northward-directed waves are subtracted from the times for south-directed waves
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Fig. 12. The regions of ray propagation (shaded areas) as a function of depth, z, and the radial distance, �, from a point
on the surface. The rays are also averaged over a circular region on the surface, forming three-dimensional �gures of
revolution. The dashed lines are the boundaries of the inversion grid.

to yield the time, �NSdi� , which predominantly measures north–south motions. Similarly, the time
di�erences, �EWdi� , between westward- and eastward directed waves yields a measure of eastward
motion. The time, �oidi� , between outward- and inward-directed waves, averaged over the full annuli,
is mainly sensitive to vertical motion and the horizontal divergence.

4.2. Inversion method

It is assumed that the convective structures and 
ows do not change during the observations
and can be represented by a discrete model. In this model, the 3-D region of wave propagation is
divided into rectangular blocks. The perturbations of the sound speed and the three components of
the 
ow velocity are approximated by linear functions of coordinates within each block, e.g.

U(x; y; z) =
∑

Cijk

[
1− |x − xi|

xi+1 − xi
] [
1− |y − yj|

yj+1 − yj

] [
1− |z − zk |

zk+1 − zk
]
; (113)

where xi; yj; zk are the coordinates of the rectangular grid, Cijk are the values of the velocity in the
grid points, and xi6x6xi+1, yj6y6yj+1, and zk6z6zk+1. A part of the x − z grid is shown in
Fig. 12 together with the ray system used in the inversions.
The travel time measured at a point on the solar surface is the result of the cumulative e�ects

of the perturbations in each of the traversed rays of the 3D ray systems. Fig. 12 shows, in the ray
approximation, the sensitivity to given subsurface location for a certain point on the surface. This
pattern is then moved around for di�erent surface points in the observed area, so that overall the
data are sensitive to all subsurface points in the depth range 0–5 Mm.
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Fig. 13. (a) A vertical cut of the 
ow pattern (arrows) and the sound-speed perturbation (grey-scale background) in a test
model of convection; (b) the result of inversion of the travel times computed for the system of rays shown in Fig. 12.

Therefore, Eqs. (110) and (112) are averaged over the ray systems corresponding to the di�erent
radial distance intervals of the data, using approximately the same number of ray paths as in the
observational procedure. As a result, one obtains two systems of linear equations that relate the data
to the sound speed variation and to the 
ow velocity, e.g. for the velocity �eld,

��di�;��� =
∑
ijk

Aijk��� · Cijk ; (114)
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Fig. 14. The horizontal 
ow velocity �eld (arrows) and the sound-speed perturbation (grey-scale background) at the depths
of 1.4 Mm (a) and 5.0 Mm (b), as inferred from the SOHO/MDI high-resolution data of 27 January 1996. The arrows
at the south–north axis indicate the location of the vertical cut in the east–west direction, which is shown in Fig. 15.

where vector-matrix A maps the structure properties into the observed travel time variations, and
indexes � and � label the location of the central point of a ray system on the surface, and index �
labels surrounding annuli. These equations are solved by a regularized least-squares technique using
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Fig. 15. The vertical 
ow �eld (arrows) and the sound-speed perturbation (grey-scale background) at the north–south
position indicated by arrows in Fig. 14.

the LSQR algorithm [58]. In [35], it was suggested to speed up the inversion by doing most of the
calculation in the Fourier domain.
The resolution and accuracy of the inversions were tested for an arti�cial model of multi-level

convective 
ow [45]. The results of inversion of the test data in comparison with the original model
are shown in Fig. 13. These results demonstrate a very accurate reconstruction of the horizontal
components of the 
ow. However, the vertical 
ow in the deep layers is not resolved because of
the predominantly horizontal propagation of the rays in these layers. The vertical velocities are also
systematically underestimated by 10–20% in the upper layers.

4.3. Inversion results

Helioseismic tomography has been used to study local properties of large-scale zonal and merid-
ional 
ows [24], convective 
ows and structures [18,45], structure and dynamics of active re-
gions [42], 
ows around sunspots [16]. For illustration, we present here some results of tomo-
graphic inversions for large-scale convective cells (‘supergranulation’) and emerging active
regions.

4.3.1. Quiet-Sun convection
Using the techniques of time-distance helioseismology, near-surface convective 
ows and struc-

tures using data from the SOI/MDI experiment on SOHO have been investigated [18,45]. The data
used were for 8.5 h on January 27, 1996 from the high-resolution mode of the MDI instrument.
The results of inversion of these data are shown in Figs. 14 and 15. It was found that, in the upper
layers, 2–3 Mm deep, the horizontal 
ow is organized in supergranular cells, with out
ows from
the center of the supergranules. The characteristic size of the cells is 20–30 Mm. Comparing with
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Fig. 16. Volume rendering of the sound-speed perturbation in the emerging active region NOAA 7879 on 4-Jul-96, 16:00
UT (top panel), 7-Jul-96, 8:00 (middle panel), and 11-Jul-96, 8:00 (bottom panel). The interior of the Sun is viewed
from beneath. The panel on the top is �a magnetogram showing the surface magnetic �eld of positive (white) and negative
(black) polarities. The horizontal size of the box is approximately 280 Mm, the vertical size is 15 Mm. The perturbations
of the sound speed which range from −1.5 to 1.5 km/s, are negative (dark grey) beneath the sunspots in the bottom
panel, and positive (lighter grey) in other places (Electronic Annex available. See http://www.elsevier.nl/locate/cam).

MDI magnetograms, it was found that the cell boundaries coincide with the areas of enhanced mag-
netic �eld. The vertical 
ows (Fig. 15) correlate with the supergranular pattern in the upper layers.
Typically, there are up
ows in the ‘hotter’ areas where the sound speed is higher than average, and
down
ows in the ‘colder’ areas.
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4.3.2. Tomography of emerging active regions
An important problem of astrophysics is understanding the mechanisms of solar activity. He-

lioseismic tomography provides a tool for studying the birth and evolution of active regions and
complexities of solar activity [46]. Fig. 16 shows an example of the emerging active region of July
1996. The perturbations of the magnetosonic speed shown at three di�erent periods are associated
with the magnetic �eld and temperature variations in the emerging magnetic ropes. These pertur-
bation are positive almost everywhere except in the regions beneath the sunspots in the bottom
panel, probably, because of the lower temperature. However, the e�ects of temperature and mag-
netic �eld are not fully separated yet in these inversions. This is a very important problem of solar
tomography.

5. Conclusion

Helioseismic inversions have provided unique information about the structure and dynamics of
the solar interior. These inverse problems can be reduced to systems of linear integral equations to
some degree of approximation, and, thus, can be solved, in principle, by standard inversion methods.
However, taking into account speci�c features of these problems discussed in this paper allows us
to develop more accurate and more e�cient techniques. Helioseismology is a fairly new subject.
During the �rst 10 years of its development substantial experience of solving the inverse problems
has been accumulated. However, the methods for two- and three-dimensional problems are still in
a very initial stage.
The methods for the �rst helioseismic inverse problem of determining the radial strati�cation,

which is important for understanding solar and stellar evolution, have been developed in considerable
detail (Section 2). The future e�orts will focus on the diagnostics of the central energy-generating
core (r=R¡ 0:2) and on the subsurface layers of turbulent convection. It is also important to develop
‘super-resolution’ methods for resolving the small-scale structures in the transition region between
the radiative and convective zones (Fig. 6).
The inversion methods for inferring the internal rotation and the aspherical component of the

solar structure (Section 3) are considerably less developed. These problems are two-dimensional
and involve very large data sets (105–106 data points). This requires developing e�cient numeri-
cal algorithms, the most successful of which employ the special (Kroneker-type) structure of the
integral kernels. The most important problem of these inversions is developing new regularization
methods which would allow a solution at high latitudes, close to the solar poles, and the solar
core, – the regions shown in grey in Fig. 9. The potential of the 2D asymptotic inversion method
(Section 3.2.1) has not been fully explored.
Solar tomography, or time–distance helioseismology, provides unique information about 3-D struc-

tures and 
ows associated with magnetic �eld and turbulent convection. This technique is at the
very beginning of its development. In this paper, we have reviewed some basic principles of this
technique based on the geometrical ray approximation, and initial inversion results. This method
leads to fairly large least-squares problems currently solved using the LSQR iterative method. How-
ever, the validity of the ray approximation has not been established yet. Developing waveform solar
tomography is one of the most challenging problems of computational helioseismology.
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